Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee (DNA Repair Research Center, Chosun University) ;
  • Seo, Yu-Seung (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2009.06.30

Abstract

The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.

Keywords

References

  1. Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R. Nitric oxide production and endothelium- dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120: 1053−1058, 1997 https://doi.org/10.1038/sj.bjp.0701011
  2. Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R, Beretz A, Stoclet JC, Andriantsitohaina R. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 128: 2324−2333, 1998
  3. Andriambeloson E, Stoclet JC, Andriantsitohaina R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J Cardiovasc Pharmacol 33: 248−254, 1999 https://doi.org/10.1097/00005344-199902000-00011
  4. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360−375, 1962
  5. Bernátová I, Púzserová A, Navarová J, Csizmadiová Z, Zeman M. Crowding-induced alterations in vascular system of Wistar- Kyoto rats: role of nitric oxide. Physiol Res 56: 667−669, 2007
  6. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ. Nitric oxide as a regulator of adrenal blood flow. Am J Physiol (Heart Circ Physiol) 264: H464−H469, 1993
  7. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ. Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur J Pharmacol 210: 105−106, 1992 https://doi.org/10.1016/0014-2999(92)90659-R
  8. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201−216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  9. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26: 13−25, 2000 https://doi.org/10.1016/S0896-6273(00)81133-2
  10. Challiss RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083−1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  11. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429−434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  12. Chen CK, Pace-Asciak CR. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 27: 363−366, 1996 https://doi.org/10.1016/0306-3623(95)02001-2
  13. Cishek MB, Galloway MT, Karim M, German JB, Kappagoda CT. Effects of red wine on endothelium dependent-relaxation in rabbits. Clin Sci 93: 507−511, 1997
  14. Curin Y, Andriantsitohaina R. Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol Rep 57: 97−107, 2005
  15. De Lorgeril M, Salen P, Martin JL, Mamelle N, Monjaud I, Touboul P, Delaye J. Effect of a Mediterranean type of diet on the rate of cardiovascular complications in patients with coronary artery disease. Insights into the protective effect of certain nutrients. J Am Coll Cardiol 28: 1103−1108, 1996 https://doi.org/10.1016/S0735-1097(96)00280-X
  16. Demrow HS, Slane PR. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation 91: 1182−1188, 1995 https://doi.org/10.1161/01.CIR.91.4.1182
  17. Diebolt M, Bucher B, Andriantsitohaina R. Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38: 159−165, 2001 https://doi.org/10.1161/01.HYP.38.2.159
  18. Douglas WW. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br J Pharmacol 34: 451−474, 1968 https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  19. Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R. Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res 53: 595−602, 2004
  20. Fisher SK, Holz RW, Agranoff BW. Muscarinic receptors in chromaffin cell culture mediate enhanced phospholipid labeling but not catecholamine secretion. J Neurochem 37: 491−487, 1981 https://doi.org/10.1111/j.1471-4159.1981.tb00482.x
  21. Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O'Malley R. Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 48: 6384−6390, 2000 https://doi.org/10.1021/jf0009347
  22. Fitzpatrick DF, Hirschfield SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol 265: H77-78, 1993
  23. Fitzpatrick DF, Hirschfield SL, Ricci T, Jantzen P, Coffey RG. Endothelium-dependent vasorelaxation caused by various plant extracts. J Cardiovasc Pharmacol 26: 90−95, 1995 https://doi.org/10.1097/00005344-199507000-00015
  24. Flesch M, Schwarz A, Bolun M. Effects of red and white wine on endothelium-dependent vasorelaxation of rat aorta and human coronary arteries. Am J Physiol 275: H1183−H1190, 1998
  25. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341: 454−457, 1993a https://doi.org/10.1016/0140-6736(93)90206-V
  26. Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet 341: 1103−1104, 1993b
  27. Freedman JE, Li L, Sauter R, Keaney JF Jr. alpha-Tocopherol and protein kinase C inhibition enhance platelet-derived nitric oxide release. FASEB J 14: 2377−2379, 2000
  28. Freedman NJ, Lefkowitz RJ. Anti-β1-adrenergic receptor antibodies and heart failure: causation, not just correlation. J Clin Invest 113: 1379−1382, 2004
  29. Fuster V, Badimon JJ, Chesebro JH. The patogenesis of coronary artery disease and the acute coronary syndromes. New Engl J Med 326: 242−250, 1992 https://doi.org/10.1056/NEJM199201233260406
  30. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69−71, 1984 https://doi.org/10.1038/309069a0
  31. German JB, Walzem RL. The health benefits of wine. Annu Rev Nutr 20: 561−593, 2000 https://doi.org/10.1146/annurev.nutr.20.1.561
  32. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995−4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  33. Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992−2998, 1982
  34. Hashimoto M, Kim S, Eto M, Iijima K, Ako J, Yoshizumi M, Akishita M, Kondo K, Itakura H, Hosoda K, Toba K, Ouchi Y. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol 88: 1457−1460, 2001 https://doi.org/10.1016/S0002-9149(01)02137-3
  35. Hertog MGL, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S. Flavonoid intake and long term risk of cardiovascular disease in the Seven Countries Study. Arch Intern Med 155: 381−386, 1995 https://doi.org/10.1001/archinte.155.4.381
  36. Huang Y, Chan NWK, Lau CW, Yao XQ, Chan FL, Chen ZY. Involvement of endothelium/nilvicoxide in vasorelaxation induced by purified green tea (-) epicatechin. Biochim Biophys Acta 1427: 322−328, 1999 https://doi.org/10.1016/S0304-4165(99)00034-3
  37. Huang Y, Zhang AQ, Lau CW, Chen ZY. Vasorelaxant effect of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci 63: 275−283, 1998 https://doi.org/10.1016/S0024-3205(98)00273-2
  38. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363−383, 1989 https://doi.org/10.1085/jgp.94.2.363
  39. Jendeková L, Kojsová S, Andriantsitohaina R, Pechánová O. The time-dependent effect of provinols on brain NO synthase activity in L-NAME-induced hypertension. Physiol Res 55: S31−37, 2006
  40. Kaye DM, Lefkowits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26: 1257−1263, 1995 https://doi.org/10.1016/0735-1097(95)00332-0
  41. Kidokoro Y, Ritchie AK. Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol 307: 199−216, 1980
  42. Kilpatrick DL, Slepetis RJ, Corcoran JJ, Kirshner N. Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem 38: 427−435, 1982 https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  43. Kilpatrick DL, Slepetis RJ, Kirshner N. Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J Neurochem 36: 1245−1255, 1981 https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  44. Knight DE, Kesteven NT. Evoked transient intracellular free $Ca^{2+}$ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond Biol Sci 218: 177−199, 1983 https://doi.org/10.1098/rspb.1983.0033
  45. Leikert JF, Räthel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial nitric oxide release from endothelial cells. Circulation 106: 1614−1617, 2002
  46. Lim DY. Resveratrol inhibits catecholamine release from the adrenal medulla. J Hypertens 26: S366, 2008
  47. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27: 53−67, 1991
  48. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115−125, 1992 https://doi.org/10.1007/BF02974085
  49. Liu S, Hu Y, Wang X, Zhong J, Lin Z. High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J Agric Food Chem 54: 8082−8085, 2006 https://doi.org/10.1021/jf061462k
  50. Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13: 315−323, 2007 https://doi.org/10.1038/nm1553
  51. Marley PD, McLeod J, Anderson C, Thomson KA. Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla. J Auton Nerv Syst 54: 184−194, 1995 https://doi.org/10.1016/0165-1838(95)00013-N
  52. Middleton EJR, Kandaswami C, Theoharides TC. The effect of plant flavonoids on mammalian cells: Implications for inflammation, heart disease and cancer. Pharmacol Rev 52: 673−751, 2000
  53. Mizutani K, Ikeda K, Kawai Y, Yamori Y. Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J Nutr Sci Vitaminol (Tokyo) 45: 95−106, 1999 https://doi.org/10.3177/jnsv.45.95
  54. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Usdin E, Kopin IJ, Brachas J ed, Catecholamines: Basic and Clinical frontiers. Pergamon Press, Oxford, p 70−72, 1979
  55. Oset-Gasque MJ, Parramon M, Hortelano S, Bosca L, Gonzalez MP. Nitric oxide implication in the control of neurosecretion by chromaffin cells. J Neurochem 63: 1693−1700, 1994 https://doi.org/10.1046/j.1471-4159.1994.63051693.x
  56. O'Sullivan AJ, Burgoyne RD. Cyclic GMP regulates nicotine- induced secretion from cultured bovine adrenal chromaffin cells: effects of 8-bromo-cyclic GMP, atrial natriuretic peptide, and nitroprusside (nitric oxide). J Neurochem 54: 1805−1808, 1990 https://doi.org/10.1111/j.1471-4159.1990.tb01238.x
  57. Pace-Asciak CR, Hahn SE, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implication for protection against coronary heart disease. Clin Chim Acta 235: 207−219, 1995 https://doi.org/10.1016/0009-8981(95)06045-1
  58. Palacios M, Knowles RG, Palmer RM, Moncada S. Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem Biophys Res Commun 165: 802−809, 1989 https://doi.org/10.1016/S0006-291X(89)80037-3
  59. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664−666, 1988 https://doi.org/10.1038/333664a0
  60. Pechánová O, Bernátová I, Babál P, Martínez MC, Kyselá S, Stvrtina S, Andriantsitohaina R. Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22: 1551−1559, 2004 https://doi.org/10.1097/01.hjh.0000133734.32125.c7
  61. Pecháňová O, Zicha J, Kojšová S, Jendeková L, Sládková M, Paulis L, Janega P, Csizmádiová Z, Bernátová I, Dobešovš Z, Šimko F, Babál P, Andriantsitohaina R, Kuneš J. Significance of antioxidants in experimental hypertension. Physiol Res 55: 3, 2006
  62. Renaud S, de Lorgeril M. Wine alcohol, platelet and the French paradox for coronary heart disease. Lancet 339: 1523−1526, 1992 https://doi.org/10.1016/0140-6736(92)91277-F
  63. Rodriguez-Pascual F, Miras-Portugal MT, Torres M. Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. Mol Pharmacol 49: 1058−1070, 1996
  64. Rotondo S, Rajtar G, Manarinis S. Effect of trans-resveratrol, a natural polyphenolic compound, on human polymorphonuclear leukocyte function. Br J Pharmacol 123: 1691−1699, 1998 https://doi.org/10.1038/sj.bjp.0701784
  65. Sakuma I, Stuehr DJ, Gross SS, Nathan C, Levi R. Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 85: 8664−8667, 1988 https://doi.org/10.1073/pnas.85.22.8664
  66. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303: 535−537, 1983 https://doi.org/10.1038/303535a0
  67. Schwarz PM, Rodriguez-Pascual F, Koesling D, Torres M, Förstermann U. Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells. Neuroscience 82: 255−265, 1998 https://doi.org/10.1016/S0306-4522(97)00274-1
  68. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816−17823, 1989
  69. Shimada K, Watanabe H, Hosoda K, Takeuchi K, Yoshikawa J. Effect of red wine on coronary flow-velocity reserve. Lancet 354: 1002, 1999 https://doi.org/10.1016/S0140-6736(99)03478-9
  70. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134−140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  71. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  72. Torres M, Ceballos G, Rubio R. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J Neurochem 63: 988−996, 1994 https://doi.org/10.1046/j.1471-4159.1994.63030988.x
  73. Uchiyama Y, Morita K, Kitayama S, Suemitsu T, Minami N, Miyasako T, Dohi T. Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular $Ca^{2+}$ concentration and catecholamine release in bovine adrenal chromaffin cells. Jpn J Pharmacol 65: 73−77, 1994 https://doi.org/10.1254/jjp.65.73
  74. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel$Ca^{2+}$ -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208−214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  75. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch Pharmacol 328: 382-387, 1985a https://doi.org/10.1007/BF00692905
  76. Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx,$^{45}Ca$influx and secretion of catecholamines in cultured bovine adrenal medullary cells. Neuroscience 15: 283−292, 1985b https://doi.org/10.1016/0306-4522(85)90135-6
  77. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463−480, 1981
  78. Wakade AR, Wakade TD. Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10: 973−978, 1983 https://doi.org/10.1016/0306-4522(83)90235-X
  79. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Förstermann U. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106: 1652−1658, 2002 https://doi.org/10.1161/01.CIR.0000029925.18593.5C
  80. Westfall TC, Westfall DP. Adrenergic agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL ed, Goodman & Gilman the pharmacological basis of therapeutics. 11th ed. McGraw-Hill, New York, p 237−295, 2005
  81. Yanagihara N, Isosaki M, Ohuchi T, Oka M. Muscarinic receptor- mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett 105: 296−298, 1979 https://doi.org/10.1016/0014-5793(79)80633-X
  82. Zenebe W, Pecháóová O. Effects of red wine polyphenolic compounds on the cardiovascular system. Bratisl Lek Listy 103: 159−165, 2002
  83. Zenebe W, Pecháóová O, Andriantsitohaina R. Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol Res 52: 425−432, 2003