Removal Efficiency of Pollutants in Agricultural Wastewater by Constructed Wetlands on Reclaimed Land in the Goheung Bay

고흥만 간척지 내 인공습지에 의한 농경배수 정화효율에 관한 연구

  • 유훈선 (동의과학대학 동의분석센터) ;
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과)
  • Received : 2009.09.15
  • Accepted : 2009.12.07
  • Published : 2009.12.31

Abstract

This research was conducted at the constructed wetland in Goheung reclaimed land, and water quality components were measured at the 12 points in 15 March 2008 and 10 January 2009, respectively. Temperature, pH, DO, EC and salinity components were measured at the field, and TOC, Cl-, COD, TSS, T-P and TN components were analyzed laboratory. Concentrations of field measured components at inflow points were higher than in constructed wetland. TOC concentration ratio of inflow water to constructed wetland water was higher in January, and Cl concentration ratio of it was higher in March. And, COD concentration ratio of it were 1.37 for March and 1.49 for January, respectively. T-P and T-N concentration ratios of it at inflow points were higher 3 times than in constructed wetland. Constructed wetland attenuated concentration of contaminated components inflow to it. Removal efficiencies of Cl-, T-P and T-N components in inflow water were high at the constructed wetland. removal efficiencies of Cl component were 83% for 1st monitoring and 76% for 2nd monitoring, this removal efficiency be caused by dilution effect of constructed wetland. removal efficiencies of T-P component were 67% for 1st monitoring and 69% for 2nd monitoring, and they of T-N component were 100% for 1st monitoring and 95% for 2nd monitoring. Abnormal removal efficiency of T-N component is caused that nitrogen in inflow water was a little. Removal efficiency of T-P component was higher in January, and T-N component was higher in March. This is caused by environmental difference between growing season and winter.

본 연구지역은 전라남도에 위치한 고흥만 간척지 내 인공습지이며, 인공습지수와 주변 유입수의 수질특성을 파악하기 위해 2008년 3월 15일 및 2009년 1월 10일에 12개 지점에서 현장조사를 수행하였다. 수온, pH, DO, EC 및 salinity 항목은 현장측정 되었으며, 채수된 시료는 실내에서 TOC, Cl-, COD, TSS, T-P 및 T-N 성분을 분석하였다. 현장 관측된 5개 항목은 인공습지에 비해 유입지점들에서 높게 나타났으며, 이는 주변 농경 작지에서 유입되는 오염물질에 의한 것이다. 인공습지수와 유입수 내 농도비는 TOC 성분은 1월에, Cl 성분은 3 월에 더욱 높은 값을 보였다. COD 성분은 인공습지수에 대한 유입수의 농도비가 1.37배와 1.49배로서 유사하였다. 유입지점들에서 T-P와 T-N 성분의 평균값은 인공습지 내에서보다 3배 이상 높았으며, 인공습지의 자정능력에 의해 농도가 저감되었다. 본 연구지역의 인공습지에서는 유입수 내 Cl, T-P, T-N 성분의 정화효율이 높은 것으로 나타났다. Cl- 성분의 정화효율은 1차 관측 시 83%, 2차 관측 시 76% 이었으며, 이는 인공습지수에 의한 희석효과에 의한 것이다. T-P 성분의 정화효율은 67%(1차 관측)와 69%(2차 관측), T-N 성분은 100%(1차 관측)와 95%(2차 관측) 로서 매우 높았다. 본 연구에서 T-N의 정화효율이 비현실적으로 높은 것은 유입수의 양이 소량이어서 인공습지수 내에서는 질소 농도가 분석한계 이하로 나타났기 때문이다. 본 연구에서는 T-P 성분의 정화효율이 1월에, T-N 성분은 3월에 높게 나타나 생장기와 동절기의 영향에 의한 것으로 판단된다.

Keywords

References

  1. 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측, 수산해양교육연구, 20(1), 58–67.
  2. 강호정, 송근예, 2004, 인공습지를 이용한 수처리 효율 및 향후 연구제언, 한국습지학회지, 6(2), 57–63.
  3. 나규환, 오종민, 이장훈, 최한영, 황응주, 2007, 수질오염학, 신광문화사, 269p.
  4. 남귀숙, 배요섭, 김형중, 이상준, 이광식, 2004, 농업용 저수지 수질개선을 위한 지하흐름 갈대인공습지의 적용, 한국습지학회지, 6(4), 59–69.
  5. 박재홍, 권수열, 2005, 인공습지에 의한 축산폐수의 처리시 계절적 영향, 한국습지학회지, 7(3), 33-39.
  6. 양재삼, 2000, 갯벌, 어떻게 할 것인가?, 첨단환경기술, 9, pp. 2–10.
  7. 전세진, 송재준, 유근우, 이용석, 장봉기, 정종태, 한동준, 허우명, 2008, 수질오염개론, 신광문화사, 258p.
  8. 최인욱, 권순국, 2002, 농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형, 한국농공학회지, 44(5), 96-105.
  9. 함종화, 윤춘경, 구원석, 김형철, 신현범, 2004, 인공습지를 이용한 하구담수호 유입하천수 수질개선 현장실험결과 분석, 한국농공학회논문집, 46(5), 141–153.
  10. 함종화, 2005, 자유수면형 인공습지에 의한 저농도 고유량의 하천수질개선 효과 분석, 한국농공학회논문집, 47(1), 79-91.
  11. Park, S. U., and I. H. Yoon, 1987, Diurnal and seasonal variations of radiative fluxes on inclined surface, J. Korean Meteor. Soc., 23(3), 40–53.
  12. Brodick, S. J., Cullen, P. and Maher, W., 1988, Denitrification in a natural wetland receiving secondary treated effluent, Water Res., 22(4), 431–439. https://doi.org/10.1016/0043-1354(88)90037-1
  13. Brodie, G.A., Hammer, D.A., TomIjanovich, D.A., 1989, Treatment of acid drainage with constructed wetland at Tennessee valley authority 950 coal mine. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 211–219.
  14. Cooper, P., Smith, M., Maynard, H., 1997. The design and performance of a nitrifying vertical-low reed bed treatment system. Wat. Sci. Tech. 35, 215–221.
  15. D'Angelo, E.M., Reddy, K.R., 1994a. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: Distribution of dissolved nutrients in the soil and water column. J. Environ. Qual. 23, 928–936. https://doi.org/10.2134/jeq1994.00472425002300050013x
  16. D'Angelo, E.M., Reddy, K.R., 1994b. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: Role of inorganic electron acceptors in nutrient release. J. Environ. Qual. 23, 937–943. https://doi.org/10.2134/jeq1994.00472425002300050014x
  17. Davido, R.L., Conway, T.E., 1989. Nitrification and denitrification at Iselin marsh: pond: meadow facility. In: Hammer, D.A. (Ed.), Constructed Wetlands for wastewater Treatment. Lewis, Chelsea, pp. 477–483.
  18. Dombush, JX, 1989. Natural renovation of leachate-degraded groundwater in excavated ponds at a refuse landfill.'' In. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Chelsea, Lewis, pp. 743–752.
  19. DuBowry, P.L, Reaves, R.P., 1994. Constructed wetlands for animal waste management. In: Proceedings of a workshop, 4-6 April. Purdue University, Wes Lafayette IN.
  20. Howard, E.A., Emerick, LC., Wildeman, T.R., 1989. Design and construction of a research site for passive mine drainage treatment in Idaho Springs, Colorado. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 761–764.
  21. Hsieh, Y.P., Coultas, C.L., 1989. Nitrogen removal from freshwater wetlands: nitrification-denitrification coupling potential. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 493–507.
  22. Kadlec, R.H, 1989. Decomposition in wastewater wetlands. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 459–468.
  23. Kivaisi, A. K., 2001, The potential for constructed wetlands for wastewater treatment and reuse in deveolping countries: a review, Ecological Engineering, 16, 545–560. https://doi.org/10.1016/S0925-8574(00)00113-0
  24. Kleinmann, R.L.P., Girts, M.A., 1987. Acid mine water treatment: an over view of an emergent technology. In: Reddy, K.R., Smith, W.H. (Eds.), Aquatic Plants for Water Treatment and Resource Recovery. Magnolia, Orlando, pp. 255–261.
  25. Koch-Rose, M.S., Reddy, K.R., Chanton, LP., 1994. Factors controlling seasonal nutrient profiles in subtropical peatland of the Florida Everglades. J. Environ. Qual. 23, 526–533. https://doi.org/10.2134/jeq1994.00472425002300030018x
  26. Matamoros, V., Garcia, J. and Bayona, J. M., 2008, Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent, Water Research, 42, 653–660. https://doi.org/10.1016/j.watres.2007.08.016
  27. Newman, S., Reddy, K.R., DeBusk, WX., Wang., Y., Shili, G., Fisher, M.M., 1997. Spatial distribution of soil nutrients in northern Everglades marsh., Water conservation area 1. Soil Sci. Soc. Am. L. 62, 1275–1283.
  28. Reddy, K.R., Delaune, R.D., DeBusk, WX., Koch, M.S., 1993. Long-term nutrient accumulation rates in the Everglades. Soil Sci. Soc. Am. L 57, 1147–1155. https://doi.org/10.2136/sssaj1993.03615995005700040044x
  29. Reddy, RK, Wang, Y., Debusk, WX., Fisher, M.M., Newman, S., 1998. Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci. Am. J. 62, 1134–1147. https://doi.org/10.2136/sssaj1998.03615995006200040039x
  30. Rivera, R, Warren, A., Curds, C.R., Robles, E., Gutierrez, A., Gallegos, E., Caldeffin, A., 1997. The application of the root zone method for the treatment and reuse of highstrength abattoir waste in Mexico. Wat. Sci. Tech. 35, 271–278. https://doi.org/10.1016/S0273-1223(97)00078-4
  31. Schreijer, M., Xampf, R., Toet, S., Verhoeven, J., 1997. The use of constructed wetlands to upgrade treated sewage effluents before discharge to natural surface water in Texel island, The Netherlands: pilot study. Wat. Sci. Tech. 35, 231–237.
  32. Seitzinger, S. P., 1988, Denitrification in freshwater and coastal marine systems; ecological and geochemical significance, Limnol. Oceanogr., 33, 702–704. https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  33. Staubitz, W.W., Surface, LM., Steenhuis, T.S., Peverly, J.H., Lavine, M.J., Weeks, N.C., Sanford, W.E., Kopka, R.J., 1989. Potential use of constructed wetlands to treat landfill leachate.'' In. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 735–742.
  34. Stengel, E., Schulz-Hock, R., 1989. Denitrification in artificial wetlands. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 484–492.
  35. Tchobanolgous, G., 1987, Aquatic plant system for waste-water treatment engineering considerations, 27-48, In Aquatic plants for water treatment and resource recovery (Reddy, K. R. and Smith, W. H.), Magonlia Publishing Inc., Orlando, Florida.
  36. Trautmann, N.M., Martin Jr, J.H., Porter, K.S., Hawk Jr., K.C., 1989. Use of artificial wetlands for treatment of municipal solid waste landfill leachate. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 245–251.
  37. Von Felde, K., Kunst, S., 1997. N- and COD-removal in vertical flow systems. Wat. Sci. Tech. 35, 79–85.
  38. Watson, J.T., Sherwood, S. C., Kadlec, R.H., Knight, R.L., Whitehouse, A.E., 1989. Performance expectations and loading rates for constructed wetlands. In: Hammer, D.A.(Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 319–351.
  39. Wenerick Jr, S.E., Webster, H.J., Stark, L.R., DeVeau, E., 1989. Tolerance of three wetland plant species to acid mine drainage: A greenhouse study. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment. Lewis, Chelsea, pp. 801–807.