DOI QR코드

DOI QR Code

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa (Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicin)
  • Received : 2010.09.27
  • Accepted : 2010.10.18
  • Published : 2010.10.31

Abstract

In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

Keywords

References

  1. Hockel M, Vaupel P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. J Natl Cancer Inst. 2001;93:266-276. https://doi.org/10.1093/jnci/93.4.266
  2. Semenza G, Wang G. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447-5454. https://doi.org/10.1128/MCB.12.12.5447
  3. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O-2-regulated prolyl hydroxylation. Science. 2001;292:468-472. https://doi.org/10.1126/science.1059796
  4. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor $1\alpha$ is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998;95:7987-7992. https://doi.org/10.1073/pnas.95.14.7987
  5. Berra E, Ginouves A, Pouyssegur J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Reports. 2006;7:41-45. https://doi.org/10.1038/sj.embor.7400598
  6. Pugh C, O'Rourke J, Nagao M, Gleadle J, Ratcliffe P. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem. 1997;272:11205. https://doi.org/10.1074/jbc.272.17.11205
  7. Arany Z, Huang L, Eckner R, Bhattacharya S, Jiang C, Goldberg M, Bunn H, Livingston D. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA. 1996;93:12969. https://doi.org/10.1073/pnas.93.23.12969
  8. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza G, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem. 2002;277:27975. https://doi.org/10.1074/jbc.M204152200
  9. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of Hypoxia-Inducible Factor 1alpha Expression and Function by the Mammalian Target of Rapamycin. Mol Cell Biol. 2002;22:7004-7014. https://doi.org/10.1128/MCB.22.20.7004-7014.2002
  10. Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17:324-332. https://doi.org/10.1016/j.semcdb.2006.02.010
  11. Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97:56-70. https://doi.org/10.1002/jcb.20675
  12. Minami H, Inoue S, Hidaka H. The Effect of KN-62, $Ca^{2+}$/Calmodulin Dependent Protein Kinase II Inhibitor on Cell Cycle. Biochem Biophys Res Commun. 1994;199:241-248. https://doi.org/10.1006/bbrc.1994.1220
  13. Tombes R, Grant S, Westin E, Krystal G. G1 cell cycle arrest and apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional $Ca^{2+}$/CaM kinase). Cell Growth Differ. 1995;6:1063-1070.
  14. Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF. Calcium signaling stimulates translation of HIF-1 alpha during hypoxia. FASEB J. 2006;20:466-475. https://doi.org/10.1096/fj.05-5086com
  15. Youn H-D, Chatila TA, Liu JO. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J. 2000;19:4323-4331. https://doi.org/10.1093/emboj/19.16.4323
  16. Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ. Activation of the $\beta$ myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J Cell Physiol. 2007;211:138-148. https://doi.org/10.1002/jcp.20916
  17. Rhun YL, Kirkland JB, Shah GM. Cellular Responses to DNA Damage in the Absence of Poly (ADP-ribose) Polymerase. Biochem Biophys Res Commun. 1998;245:1-10. https://doi.org/10.1006/bbrc.1998.8257
  18. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38:713-721. https://doi.org/10.1016/S0161-5890(01)00108-0
  19. Virag L, Scott GS, Antal-Szalmas P, O'Connor M, Ohshima H, Szabo C. Requirement of intracellular calcium mobilization for peroxynitrite-induced poly (ADP-ribose) synthetase activation and cytotoxicity. Mol Pharmacol. 1999;56:824-833.
  20. Martin-Oliva D, Aguilar-Quesada R, O'Valle F, Munoz-Gamez JA, Martinez-Romero R, Garcia del Moral R, Ruiz de Almodovar JM, Villuendas R, Piris MA, Oliver FJ. Inhibition of poly (ADP-Ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Research. 2006;66:5744-5756. https://doi.org/10.1158/0008-5472.CAN-05-3050
  21. Martinez-Romero R, Martinez-Lara E, Aguilar-Quesada R, Peralta A, Oliver FJ, Siles E. PARP-1 modulates deferoxamine-induced HIF-1alpha accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem. 2008;104:2248-2260. https://doi.org/10.1002/jcb.21781
  22. Martinez-Romero R, Canuelo A, Martinez-Lara E, Oliver FJ, Cardenas S, Siles E. Poly (ADP-ribose) polymerase-1 modulation of in vivo response of brain hypoxia-inducible factor-1 to hypoxia/reoxygenation is mediated by nitric oxide and factor inhibiting HIF. J Neurochem. 2009;111:150-159. https://doi.org/10.1111/j.1471-4159.2009.06307.x
  23. Elser M, Borsig L, Hassa PO, Erener S, Messner S, Valovka T, Keller S, Gassmann M, Hottiger MO. Poly (ADP-Ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression. Molecular Cancer Research. 2008;6:282-290. https://doi.org/10.1158/1541-7786.MCR-07-0377
  24. Chun YS, Choi E, Yeo EJ, Lee JH, Kim MS, Park JW. A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J Cell Sci. 2001;114:4051-4061.
  25. Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J. A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci U S A. 2010;107:69-74. https://doi.org/10.1073/pnas.0909734107
  26. Shin HW, Cho CH, Kim TY, Park JW. Sunitinib deregulates tumor adaptation to hypoxia by inhibiting HIF-1alpha synthesis in HT-29 colon cancer cells. Biochem Biophys Res Commun. 2010;398:205-211. https://doi.org/10.1016/j.bbrc.2010.06.060
  27. Lang KJD, Kappel A, Goodall GJ. Hypoxia-inducible Factor-1alpha mRNA Contains an Internal Ribosome Entry Site That Allows Efficient Translation during Normoxia and Hypoxia. Mol Biol Cell. 2002;13:1792-1801. https://doi.org/10.1091/mbc.02-02-0017
  28. Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidy-linositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 2002;277:15162-15170. https://doi.org/10.1074/jbc.M111162200
  29. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P. Calcium signalling--an overview. Semin Cell Dev Biol. 2001;12:3-10. https://doi.org/10.1006/scdb.2000.0211
  30. Howe CJ, LaHair MM, McCubrey JA, Franklin RA. Redox Regulation of the Calcium/Calmodulin-dependent Protein Kinases. J Biol Chem. 2004;279:44573-44581. https://doi.org/10.1074/jbc.M404175200
  31. Yuan G, Nanduri J, Bhasker C, Semenza G, Prabhakar N. $Ca^{2+}$/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005;280:4321-4328. https://doi.org/10.1074/jbc.M407706200
  32. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-1alpha expression by intermittent hypoxia: Involvement of NADPH oxidase, $Ca^{2+}$ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008;217:674-685. https://doi.org/10.1002/jcp.21537
  33. Westra J, Brouwer E, Bos R, Posthumus MD, Meer BD-VD, Kallenberg CGM, Limburg PC. Regulation of Cytokine-Induced HIF-1alpha; Expression in Rheumatoid Synovial Fibroblasts. Ann N Y Acad Sci. 2007;1108:340-348. https://doi.org/10.1196/annals.1422.035
  34. Westra J, Brouwer E, Bouwman E, Meer BD-vd, Posthumus MD, Leeuwen MAv, Limburg PC, Ueda Y, Kallenberg CGM. Role for CaMKII Inhibition in Rheumatoid Arthritis. Ann N Y Acad Sci. 2009;1173:706-711. https://doi.org/10.1111/j.1749-6632.2009.04736.x
  35. Westra J, Brouwer E, van Roosmalen IA, Doornbos-van der Meer B, van Leeuwen MA, Posthumus MD, Kallenberg CG. Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor. BMC Musculoskelet Disord. 2010;11:61. https://doi.org/10.1186/1471-2474-11-61
  36. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: Worldwide incidence and trends. Gastroenterology. 2004;127:S5-S16. https://doi.org/10.1053/j.gastro.2004.09.011
  37. Jee SH, Ohrr H, Sull JW, Samet JM. Cigarette Smoking, Alcohol Drinking, Hepatitis B, and Risk for Hepatocellular Carcinoma in Korea. J Natl Cancer Inst. 2004;96:1851-1856. https://doi.org/10.1093/jnci/djh334
  38. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876-885. https://doi.org/10.1038/nrc1736
  39. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Science. 2003;94:15-21. https://doi.org/10.1111/j.1349-7006.2003.tb01345.x

Cited by

  1. Alpha-CaMKII Plays a Critical Role in Determining the Aggressive Behavior of Human Osteosarcoma vol.11, pp.4, 2010, https://doi.org/10.1158/1541-7786.mcr-12-0572
  2. Darbepoetin inhibits proliferation of hepatic cancer cells in the presence of TGF-β vol.88, pp.1, 2014, https://doi.org/10.1007/s00204-013-1094-5
  3. Screening of breast cancer stem cell inhibitors using a protein kinase inhibitor library vol.17, pp.None, 2010, https://doi.org/10.1186/s12935-017-0392-z
  4. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention vol.12, pp.1, 2010, https://doi.org/10.3390/ph12010008
  5. The dysregulated expression and functional effect of CaMK2 in cancer vol.21, pp.1, 2010, https://doi.org/10.1186/s12935-021-02030-7