DOI QR코드

DOI QR Code

Shear bond strength of veneer ceramic and colored zirconia by using aqueous metal chloride solutions

염화수화물용액 침지법으로 제작한 유색 지르코니아와 전장도재의 전단결합강도

  • Yun, Kwi-Dug (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Ryu, Su-Kyoung (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Vang, Mong-Sook (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Yang, Hong-So (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Hyun-Seung (Kuwotech Co. Ltd.) ;
  • Park, Sang-Won (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 윤귀덕 (전남대학교 치의학전문대학원 보철학교실) ;
  • 유수경 (전남대학교 치의학전문대학원 보철학교실) ;
  • 방몽숙 (전남대학교 치의학전문대학원 보철학교실) ;
  • 양홍서 (전남대학교 치의학전문대학원 보철학교실) ;
  • 김현승 ((주)쿠보텍) ;
  • 박상원 (전남대학교 치의학전문대학원 보철학교실)
  • Received : 2010.04.01
  • Accepted : 2010.04.14
  • Published : 2010.04.30

Abstract

Purpose: The purposes of this study was to evaluates shear bond strength between zirconia core and veneer-ceramic in order to examine the clinical practice of colored zirconia block fabricated by infiltration method into the metal chloride solution. Material and methods: CNU block and $Everest{(R)}$ ZS blank were used. VITA In-$Ceram{(R)}$2000 YZ Coloring liquid (LL1) and 3 aqueous metal chloride solutions containing chromium and molybdenum ingredients were used. 40 zirconia specimens were prepared into cuboid shape ($5{\times}5{\times}10 mm$). All specimens were divided into 5 groups by infiltrating into the coloring liquids. After that, porcelain was build up into the shape of $5{\times}5{\times}4mm^3$, followed by sintering. The maximum loading and shear bond strength was measured. Failure patterns and failure sites were examined. Results: 1. There were no statistical differences in shear bond strength between zirconia blocks (P > .05). 2. There were no statistically significant differences in shear bond strength between non-colored and colored zirconia blocks, while shear bond strength of non-colored zirconia blocks is higher than that of colored specimen (P > .05). 3. In the comparison with shear bond strength among colored zirconia blocks, there were no statistical differences according to kinds of coloring liquid (P > .05). 4. Mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. The veneering ceramic failure of all specimens was observed in either interface of zirconia or veneering ceramic. Conclusion: Shear bond strength between colored zirconia and veneering ceramic shows lower tendency than non-colored zirconia, but there was clinically allowable value.

연구목적: 본 연구의 목적은 금속염화물 용액 내 침지법으로 제작된 유색 지르코니아 블록의 임상적 응용을 타진해보기 위해 지르코니아 코어와 전장도재간의 전단결합강도를 평가하고자 함이다. 연구 재료 및 방법: 지르코니아 블록은 자체 제작한 것과 시판되는 제품을 이용하였다. 색소체 용액으로 크로뮴과 몰리브데늄을 포함하는 3가지 염화수화물 용액을 제조하였고, 대조군으로 상용되고 있는 색소체 용액을 준비하였다. 가로 5 mm, 세로 5 mm, 높이 10 mm의 직육면체 지르코니아 시편을 블록마다 40개를 제작하였고, 시편을 임의로 5개 그룹으로 나누어 색소체 용액에 침지하여 유색 지르코니아를 제작한 후, 도재를 가로 5 mm, 세로 5 mm, 높이 4 mm의 직육면체가 되도록 축성하고 소결하였다. 시편의 최대 하중값과 전단결합강도를 측정하고 파절된 시편의 파절면과 파절 양상을 검사하였다. 결과:1. 지르코니아 블록간의 전단결합강도는 통계학적으로 차이를 보이지 않았다 (P > .05). 2. 무색 지르코니아와 유색 지르코니아 간의 전단결합강도는 무색이 높은 경향을 보였으나 통계학적으로 유의한 차이는 보이지 않았다 (P > .05). 3. 유색 지르코니아의 전단결합강도 비교 시 색소체 용액의 종류에 따른 통계학적인 차이는 보이지 않았다 (P > .05). 4. 지르코니아와 전장도재간의 파절은 주로 혼합성 파절 양상이 관찰되었다. 모든 시편의 전장도재 파절은 지르코니아와의 계면이나 전장도재내에서 관찰되었으며 지르코니아의 응집성 파절은 보이지 않았다. 결론:유색 지르코니아와 전장도재의 전단결합강도는 무색 지르코니아보다 더 낮은 경향을 보였지만, 관찰된 수치는 임상적으로 허용 가능한 것으로 사료된다.

Keywords

References

  1. Piconi C, Maccauro G. Review zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  2. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20:441-8. https://doi.org/10.1016/j.dental.2003.05.003
  3. Kim JY, Seo BC, Oh HK. Toughness Mechanism and Manufacturing Process of ZrO2 Ceramics. Bull Kor Ceram Soc 1992;7:80-8.
  4. Standard OC, Sorrell CC. Densification of Zirconia-conventional methods. Key Eng Mater 1998;251-300.
  5. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater 2008;24:633-8. https://doi.org/10.1016/j.dental.2007.06.030
  6. Meyenberg KH, Luthy H, Scharer P. Zirconia posts: A new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80. https://doi.org/10.1111/j.1708-8240.1995.tb00565.x
  7. Luthardt R, Weber A, Rudolph H, Schone C, Quaas S, Walter M. Design and production of dental prosthetic restorations: basic research on dental CAD/CAM technology. Int J Comput Dent 2002;5:165-76.
  8. Wohlwend A, Studer S, Scharer P. The zirconium oxide abutment: An all-ceramic abutment for the esthetic improvement of implant super structures. Quintessence Dent Technol 1997;1:63-74.
  9. Keith O, Kusy RP, Whitley JQ. Zirconia brackets: an evaluation of morphology and coefficients of friction. Am J Orthod Dentofacial Orthop 1994;106:605-14. https://doi.org/10.1016/S0889-5406(94)70085-0
  10. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  11. Sundh A, Sjo ¨gren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 2006;22:778-84. https://doi.org/10.1016/j.dental.2005.11.006
  12. Aboushelib MN, Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  13. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and venner materials. J Prosthet Dent 2002;88:10-5.
  14. Braga RR, Ballester RY, Daronch M. Influence of time and adhesive system on the extrusion shear strength between feldspathic porcelain and bovine dentin. Dent Mater 2000;16:303-10. https://doi.org/10.1016/S0109-5641(00)00023-3
  15. Al-Shehri SA, Mohammed H, Wilson CA. Influence of lamination on the flexural strength of a dental castable glass ceramic. J Prosthet Dent 1996;76:23-8. https://doi.org/10.1016/S0022-3913(96)90341-8
  16. Isgro G, Pallav P, van der Zel JM, Feilzer AJ. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. J Prosthet Dent 2003;90:465-73. https://doi.org/10.1016/j.prosdent.2003.08.003
  17. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CAD-CAM produced all-ceramic dental crown. Dent Mater 2005;21:242-51. https://doi.org/10.1016/j.dental.2004.03.013
  18. Oh GJ. Sintering behavior and mechanical properties of zirconia compacts for dental application. A master's thesis. Department of Dental Science. Chonnam National University, 2008.
  19. Southan DE, Jorgensen KD. Faulty in porcelain jacket crowns. Aust Dent J 1972;17:436-40. https://doi.org/10.1111/j.1834-7819.1972.tb04974.x
  20. Beuer F, Erdelt KJ, Schweiger J, Eichberger M, Gernet W. Flexural strength and coloured and aged zirconia. 2004 IADR; abstract no 0113.
  21. Cales B. Colored zirconia ceramics for dental applications. Bioceramics 1998;11:591-4.
  22. Shah K, Holloway J, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3YTZP. J Biomed Mater Res B Appl Biomater 2008;87:329-37.
  23. Bhushan S, Pober R, Giodano R. Coloration of partially stabilized zirconia. 2005 IADR; abstract no 1775.
  24. Craig RG. Mechanical properties in restorative dental materials. 11th ed. New York: Mosby: 2002, p.551-92.
  25. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349-55. https://doi.org/10.1016/j.prosdent.2004.02.009
  26. Dundar M, Ozcan M, Comlekoglu E, Gungor MA, Artunc C. Bond strengths of veneering ceramics to reinforced ceramic core materials. Int J Prosthodont 2005;18:71-2.
  27. Gremillard L, Epicier T, Chevalier J, Fantozzi G. Microstructural study of silica-doped zirconia ceramics. Acta Mater 2000;48:4647- 52. https://doi.org/10.1016/S1359-6454(00)00252-4
  28. Mecartney M. Influence of an amorphous second phase on the properties of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J Am Ceram Soc 1987;70:54-8. https://doi.org/10.1111/j.1151-2916.1987.tb04853.x
  29. Tsubakino H, Nozato R, Hamamoto M. Effect of alumina addition on the tetragonal-to-monoclinic phase transformation in zirconia- 3 mol % yttria. J Am Ceram Soc 1991;74:440-3. https://doi.org/10.1111/j.1151-2916.1991.tb06905.x

Cited by

  1. 치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구 vol.33, pp.4, 2010, https://doi.org/10.14347/kadt.2011.33.4.299
  2. 치과용 지르코니아 코어에서 착색농도에 따른 색조측정 vol.35, pp.3, 2010, https://doi.org/10.14347/kadt.2013.35.3.193