DOI QR코드

DOI QR Code

The Protective Effect of Quercetin-3-O-${\beta}$-D-Glucuronopyranoside on Ethanol-induced Damage in Cultured Feline Esophageal Epithelial Cells

  • Cho, Jung-Hyun (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Park, Sun-Young (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Lee, Ho-Sung (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Whang, Wan-Kyunn (Department of Pharmacognosy, College of Pharmacy, Chung-Ang University) ;
  • Sohn, Uy-Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
  • Received : 2011.09.30
  • Accepted : 2011.10.30
  • Published : 2011.12.30

Abstract

Quercetin-3-O-${\beta}$-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. We aimed to explore its protective effect against ethanol-induced cell damage and the mechanism involved in the effect in feline esophageal epithelial cells (EEC). Cell viability was tested and 2',7'-dichlorofluorescin diacetate assay was used to detect intracellular $H_2O_2$ production. Western blotting analysis was performed to investigate MAPK activation and interleukin 6 (IL-6) expression. Exposure of cells to 10% ethanol time-dependently decreased cell viability. Notably, exposure to ethanol for 30 min decreased cell viability to 43.4%. When cells were incubated with $50{\mu}M$ QGC for 12 h prior to and during ethanol treatment, cell viability was increased to 65%. QGC also inhibited the $H_2O_2$ production and activation of ERK 1/2 induced by ethanol. Pretreatment of cells with the NADPH oxidase inhibitor, diphenylene iodonium, also inhibited the ethanol-induced ERK 1/2 activation. Treatment of cells with ethanol for 30 or 60 min in the absence or presence of QGC exhibited no changes in the IL-6 expression or release compared to control. Taken together, the data indicate that the cytoprotective effect of QGC against ethanol-induced cell damage may involve inhibition of ROS generation and downstream activation of the ERK 1/2 in feline EEC.

Keywords

References

  1. Soleas GJ, Diamandis EP, Goldberg DM. Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal. 1997;11:287-313. https://doi.org/10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4
  2. Bjorkman DJ, Jessop LD. Effects of acute and chronic ethanol exposure on intestinal microvillus membrane lipid composition and fluidity. Alcohol Clin Exp Res. 1994;18:560-565. https://doi.org/10.1111/j.1530-0277.1994.tb00910.x
  3. Teyssen S, Singer MV. Alcohol-related diseases of the oesophagus and stomach. Best Pract Res Clin Gastroenterol. 2003;17:557-573. https://doi.org/10.1016/S1521-6918(03)00049-0
  4. Hogan WJ, Viegas de Andrade SR, Winship DH. Ethanol-induced acute esophageal motor dysfunction. J Appl Physiol. 1972;32:755-760.
  5. Silver LS, Worner TM, Korsten MA. Esophageal function in chronic alcoholics. Am J Gastroenterol. 1986;81:423-427.
  6. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721-724. https://doi.org/10.1016/S0140-6736(94)92211-X
  7. Aviram M. Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res. 2000;33 Suppl:S85-S97.
  8. de Magalhaes JP, Church GM. Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp Gerontol. 2006;41:1-10. https://doi.org/10.1016/j.exger.2005.09.002
  9. Menon SG, Goswami PC. A redox cycle within the cell cycle: ring in the old with the new. Oncogene. 2007;26:1101-1109. https://doi.org/10.1038/sj.onc.1209895
  10. Olyaee M, Sontag S, Salman W, Schnell T, Mobarhan S, Eiznhamer D, Keshavarzian A. Mucosal reactive oxygen species production in oesophagitis and Barrett's oesophagus. Gut. 1995;37:168-173. https://doi.org/10.1136/gut.37.2.168
  11. Yamaguchi T, Yoshida N, Tomatsuri N, Takayama R, Katada K, Takagi T, Ichikawa H, Naito Y, Okanoue T, Yoshikawa T. Cytokine-induced neutrophil accumulation in the pathogenesis of acute reflux esophagitis in rats. Int J Mol Med. 2005;16:71-77.
  12. Odeleye OE, Eskelson CD, Mufti SI, Watson RR. Vitamin E inhibition of lipid peroxidation and ethanol-mediated promotion of esophageal tumorigenesis. Nutr Cancer. 1992;17:223-234. https://doi.org/10.1080/01635589209514191
  13. Stein HJ, Esplugues J, Whittle BJ, Bauerfeind P, Hinder RA, Blum AL. Direct cytotoxic effect of oxygen radicals on the gastric mucosa. Surgery. 1989;106:318-323.
  14. Stein HJ, Hinder RA, Oosthuizen MM. Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. Surgery. 1990;108:467-473.
  15. Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life Sci. 2004;74:2339-2364. https://doi.org/10.1016/j.lfs.2003.11.001
  16. Chen J, Ishac EJ, Dent P, Kunos G, Gao B. Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver. Biochem J. 1998;334:669-676.
  17. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37-40. https://doi.org/10.1038/35065000
  18. Shapiro L, Dinarello CA. Hyperosmotic stress as a stimulant for proinflammatory cytokine production. Exp Cell Res. 1997;231:354-362. https://doi.org/10.1006/excr.1997.3476
  19. Zu YL, Qi J, Gilchrist A, Fernandez GA, Vazquez-Abad D, Kreutzer DL, Huang CK, Sha'afi RI. p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-alpha or FMLP stimulation. J Immunol. 1998;160:1982-1989.
  20. Ludwig S, Hoffmeyer A, Goebeler M, Kilian K, Hafner H, Neufeld B, Han J, Rapp UR. The stress inducer arsenite activates mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 via a MAPK kinase 6/p38-dependent pathway. J Biol Chem. 1998;273:1917-1922. https://doi.org/10.1074/jbc.273.4.1917
  21. Hanck C, Rossol S, Bocker U, Tokus M, Singer MV. Presence of plasma endotoxin is correlated with tumour necrosis factor receptor levels and disease activity in alcoholic cirrhosis. Alcohol Alcohol. 1998;33:606-608. https://doi.org/10.1093/alcalc/33.6.606
  22. Tilg H, Wilmer A, Vogel W, Herold M, Nolchen B, Judmaier G, Huber C. Serum levels of cytokines in chronic liver diseases. Gastroenterology. 1992;103:264-274.
  23. Tilg H, Vogel W, Wiedermann CJ, Shapiro L, Herold M, Judmaier G, Dinarello CA. Circulating interleukin-1 and tumor necrosis factor antagonists in liver disease. Hepatology. 1993;18:1132-1138. https://doi.org/10.1002/hep.1840180519
  24. Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, Thurman RG. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology. 1999;117:942-952. https://doi.org/10.1016/S0016-5085(99)70354-9
  25. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci. 2007;81:177-187. https://doi.org/10.1016/j.lfs.2007.05.005
  26. Cheng L, Cao W, Behar J, Biancani P, Harnett KM. Inflammation induced changes in arachidonic acid metabolism in cat LES circular muscle. Am J Physiol Gastrointest Liver Physiol. 2005;288:G787-G797. https://doi.org/10.1152/ajpgi.00327.2004
  27. Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, Harnett KM. Platelet-activating factor and prostaglandin E2 impair esophageal ACh release in experimental esophagitis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G418-G428. https://doi.org/10.1152/ajpgi.00024.2005
  28. Cao W, Cheng L, Behar J, Fiocchi C, Biancani P, Harnett KM. Proinflammatory cytokines alter/reduce esophageal circular muscle contraction in experimental cat esophagitis. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1131-G1139. https://doi.org/10.1152/ajpgi.00216.2004
  29. Shen SC, Ko CH, Tseng SW, Tsai SH, Chen YC. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol Appl Pharmacol. 2004;197:84-95. https://doi.org/10.1016/j.taap.2004.02.002
  30. Ko CH, Shen SC, Lee TJ, Chen YC. Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol Cancer Ther. 2005;4:281-290.
  31. Zayachkivska OS, Konturek SJ, Drozdowicz D, Konturek PC, Brzozowski T, Ghegotsky MR. Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol. 2005;56 Suppl 1:219-231.
  32. Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, Kumazawa Y, Morikawa S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci. 2003;74:709-721. https://doi.org/10.1016/j.lfs.2003.06.036
  33. Reiterer G, Toborek M, Hennig B. Quercetin protects against linoleic acid-induced porcine endothelial cell dysfunction. J Nutr. 2004;134:771-775.
  34. Borska S, Gebarowska E, Wysocka T, Drag-Zalesinska M, Zabel M. The effects of quercetin vs cisplatin on proliferation and the apoptotic process in A549 and SW1271 cell lines in in vitro conditions. Folia Morphol (Warsz). 2004;63:103-105.
  35. Kahraman A, Erkasap N, Koken T, Serteser M, Aktepe F, Erkasap S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology. 2003;183:133-142. https://doi.org/10.1016/S0300-483X(02)00514-0
  36. Suzuki Y, Ishihara M, Segami T, Ito M. Anti-ulcer effects of antioxidants, quercetin, alpha-tocopherol, nifedipine and tetracycline in rats. Jpn J Pharmacol. 1998;78:435-441. https://doi.org/10.1254/jjp.78.435
  37. Min YS, Lee SE, Hong ST, Kim HS, Choi BC, Sim SS, Whang WK, Sohn UD. The Inhibitory Effect of Quercetin-3-O-beta-D-Glucuronopyranoside on Gastritis and Reflux Esophagitis in Rats. Korean J Physiol Pharmacol. 2009;13:295-300. https://doi.org/10.4196/kjpp.2009.13.4.295
  38. Kim JS, Song HJ, Ko SK, Whang WK, Sohn UD. Quercetin-3-O-beta-d-glucuronopyranoside (QGC)-induced HO-1 expression through ERK and PI3K activation in cultured feline esophageal epithelial cells. Fitoterapia. 2010;81:85-92. https://doi.org/10.1016/j.fitote.2009.08.008
  39. Jurgenliemk G, Nahrstedt A. Phenolic compounds from Hypericum perforatum. Planta Med. 2002;68:88-91. https://doi.org/10.1055/s-2002-20053
  40. Park SY, Sohn UD. Inhibitory effect of rosiglitazone on the acid-induced intracellular generation of hydrogen peroxide in cultured feline esophageal epithelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:191-201. https://doi.org/10.1007/s00210-010-0594-6
  41. Franke A, Teyssen S, Singer MV. Alcohol-related diseases of the esophagus and stomach. Dig Dis. 2005;23:204-213. https://doi.org/10.1159/000090167
  42. Rajendram R, Preedy VR. Effect of alcohol consumption on the gut. Dig Dis. 2005;23:214-221. https://doi.org/10.1159/000090168
  43. Zhang J, Stanley RA, Adaim A, Melton LD, Skinner MA. Free radical scavenging and cytoprotective activities of phenolic antioxidants. Mol Nutr Food Res. 2006;50:996-1005. https://doi.org/10.1002/mnfr.200600072
  44. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418-425.
  45. Chow JM, Shen SC, Huan SK, Lin HY, Chen YC. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 2005;69:1839-1851. https://doi.org/10.1016/j.bcp.2005.03.017
  46. Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ. Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem. 2006;54:9798-9804. https://doi.org/10.1021/jf0620719
  47. Kaviarasan S, Ramamurthy N, Gunasekaran P, Varalakshmi E, Anuradha CV. Epigallocatechin-3-gallate(-)protects Chang liver cells against ethanol-induced cytotoxicity and apoptosis. Basic Clin Pharmacol Toxicol. 2007;100:151-156. https://doi.org/10.1111/j.1742-7843.2006.00036.x
  48. Takahashi T, Morita K, Akagi R, Sassa S. Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem. 2004;11:1545-1561. https://doi.org/10.2174/0929867043365080
  49. Zhou H, Lu F, Latham C, Zander DS, Visner GA. Heme oxygenase-1 expression in human lungs with cystic fibrosis and cytoprotective effects against Pseudomonas aeruginosa in vitro. Am J Respir Crit Care Med. 2004;170:633-640. https://doi.org/10.1164/rccm.200311-1607OC
  50. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD, Bach FH. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4:1073-1077. https://doi.org/10.1038/2063
  51. Taille C, El-Benna J, Lanone S, Dang MC, Ogier-Denis E, Aubier M, Boczkowski J. Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability. J Biol Chem. 2004;279:28681-28688. https://doi.org/10.1074/jbc.M310661200
  52. Song HJ, Shin CY, Oh TY, Sohn UD. The protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: involvement of HO-1 and ERK. J Ethnopharmacol. 2008;118:94-101. https://doi.org/10.1016/j.jep.2008.03.010
  53. Gate L, Paul J, Ba GN, Tew KD, Tapiero H. Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother. 1999;53:169-180. https://doi.org/10.1016/S0753-3322(99)80086-9
  54. Mizui T, Sato H, Hirose F, Doteuchi M. Effect of antiperoxidative drugs on gastric damage induced by ethanol in rats. Life Sci. 1987;41:755-763. https://doi.org/10.1016/0024-3205(87)90456-5
  55. Szelenyi I, Brune K. Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats. Dig Dis Sci. 1988;33:865-871. https://doi.org/10.1007/BF01550977
  56. Lee HO, Byun YJ, Cho KO, Kim SY, Lee SB, Kim HS, Kwon OJ, Jeong SW. GS28 protects neuronal cell death induced by hydrogen peroxide under glutathione-depleted condition. Korean J Physiol Pharmacol. 2011;15:149-156. https://doi.org/10.4196/kjpp.2011.15.3.149
  57. Lee YJ, Kim NY, Suh YA, Lee C. Involvement of ROS in curcumin-induced autophagic cell death. Korean J Physiol Pharmacol. 2011;15:1-7. https://doi.org/10.4196/kjpp.2011.15.1.1
  58. Kandaswami C, Middleton E Jr. Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol. 1994;366:351-376.
  59. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035-1042. https://doi.org/10.1021/np9904509
  60. Koch OR, Pani G, Borrello S, Colavitti R, Cravero A, Farre S, Galeotti T. Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med. 2004;25:191-198. https://doi.org/10.1016/j.mam.2004.02.019
  61. Li Y, Walker DW, King MA. Peroxide mediates ethanol-induced cytotoxicity in PC12 cells. Free Radic Biol Med. 2001;30:389-392. https://doi.org/10.1016/S0891-5849(00)00484-6
  62. Adachi M, Ishii H. Role of mitochondria in alcoholic liver injury. Free Radic Biol Med. 2002;32:487-491. https://doi.org/10.1016/S0891-5849(02)00740-2
  63. Li SY, Li Q, Shen JJ, Dong F, Sigmon VK, Liu Y, Ren J. Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes: role of MAP kinase signaling. J Mol Cell Cardiol. 2006;40:283-294. https://doi.org/10.1016/j.yjmcc.2005.11.006
  64. Zima T, Kalousova M. Oxidative stress and signal transduction pathways in alcoholic liver disease. Alcohol Clin Exp Res. 2005;29(11 Suppl):110S-115S.
  65. Chen JR, Shankar K, Nagarajan S, Badger TM, Ronis MJ. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade. J Pharmacol Exp Ther. 2008;324:50-59.
  66. Novitskiy G, Traore K, Wang L, Trush MA, Mezey E. Effects of ethanol and acetaldehyde on reactive oxygen species production in rat hepatic stellate cells. Alcohol Clin Exp Res. 2006;30:1429-1435. https://doi.org/10.1111/j.1530-0277.2006.00171.x
  67. Polikandriotis JA, Rupnow HL, Elms SC, Clempus RE, Campbell DJ, Sutliff RL, Brown LA, Guidot DM, Hart CM. Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung. Am J Respir Cell Mol Biol. 2006;34:314-319. https://doi.org/10.1165/rcmb.2005-0320OC
  68. Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol. 2006;79:1348-1356. https://doi.org/10.1189/jlb.1005613
  69. Jeong HJ, Hong SH, Park RK, An NH, Kim HM. Ethanol induces the production of cytokines via the $Ca^{2+}$, MAP kinase, HIF-1alpha, and NF-kappaB pathway. Life Sci. 2005;77:2179-2192. https://doi.org/10.1016/j.lfs.2005.04.014
  70. Rieder F, Cheng L, Harnett KM, Chak A, Cooper GS, Isenberg G, Ray M, Katz JA, Catanzaro A, O'Shea R, Post AB, Wong R, Sivak MV, McCormick T, Phillips M, West GA, Willis JE, Biancani P, Fiocchi C. Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities. Gastroenterology. 2007;132:154-165. https://doi.org/10.1053/j.gastro.2006.10.009

Cited by

  1. The cytoprotective effect of Rumex Aquaticus Herba extract against hydrogen peroxide-induced oxidative stress in AGS cells vol.39, pp.12, 2011, https://doi.org/10.1007/s12272-016-0863-0
  2. Antimutagenic and antioxidant properties of the aqueous extracts of organic and conventional grapevineVitis labruscacv. Isabella leaves in V79 cells vol.79, pp.18, 2011, https://doi.org/10.1080/15287394.2016.1190675
  3. Effect ofRumex Aquaticus HerbaExtract AgainstHelicobacter pylori-Induced Inflammation in Gastric Epithelial Cells vol.19, pp.1, 2016, https://doi.org/10.1089/jmf.2015.3473