DOI QR코드

DOI QR Code

Fabrication of [320×256]-FPA Infrared Thermographic Module Based on [InAs/GaSb] Strained-Layer Superlattice

[InAs/GaSb] 응력 초격자에 기초한 [320×256]-FPA 적외선 열영상 모듈 제작

  • Lee, S.J. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science) ;
  • Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science) ;
  • Bae, S.H. (i3system Inc.) ;
  • Jung, H. (i3system Inc.)
  • 이상준 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실) ;
  • 노삼규 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실) ;
  • 배수호 (아이쓰리시스템(주)) ;
  • 정한 (아이쓰리시스템(주))
  • Received : 2010.09.30
  • Accepted : 2010.12.13
  • Published : 2011.01.30

Abstract

An infrared thermographic imaging module of [$320{\times}256$] focal-plane array (FPA) based on [InAs/GaSb] strained-layer superlattice (SLS) was fabricated, and its images were demonstrated. The p-i-n device consisted of an active layer (i) of 300-period [13/7]-ML [InAs/GaSb]-SLS and a pair of p/n-electrodes of (60/115)-period [InAs:(Be/Si)/GaSb]-SLS. FTIR photoresponse spectra taken from a test device revealed that the peak wavelength (${\lambda}_p$) and the cutoff wavelength (${\lambda}_{co}$) were approximately $3.1/2.7{\mu}m$ and $3.8{\mu}m$, respectively, and it was confirmed that the device was operated up to a temperature of 180 K. The $30/24-{\mu}m$ design rule was applied to single pixel pitch/mesa, and a standard photolithography was introduced for [$320{\times}256$]-FPA fabrication. An FPA-ROIC thermographic module was accomplished by using a $18/10-{\mu}m$ In-bump/UBM process and a flip-chip bonding technique, and the thermographic image was demonstrated by utilizing a mid-infrared camera and an image processor.

InAs/GaSb 제2형 응력초격자(SLS)를 활성층에 탑재한 [$320{\times}256$] 초점면 배열(FPA) 적외선 열영상 모듈을 제작하고 열영상을 구현하였다. p-i-n형으로 설계된 소자의 활성층(i) 구조는 300 주기의 [13/7]-ML [InAs/GaSb]-SLS로 구성되어 있고, p와 n 전극층에는 각각 60주기의 [InAs:Be/GaSb]-SLS와 115 주기의 [InAs:Si/GaSb]-SLS 구조를 채용하였다. 시험소자의 광반응(PR) 스펙트럼으로부터 피크 파장(${\lambda}_p$)과 차단 파장(${\lambda}_{co}$)은 각각 ${\sim}3.1/2.7{\mu}m$${\sim}3.8{\mu}m$이고 180 K 온도까지 동작을 확인하였다. 단위 화소의 간격/메사는 $30/24{\mu}m$ 규격으로 설계되었으며, [$320{\times}256$]-FPA는 표준 광묘화법으로 제작하였다. $18/10{\mu}m$의 In-bump/UBM 공정과 flip-chip 결합 기술을 적용하여 FPA-ROIC 열영상 모듈을 완성하였으며, 중적외선용 영상구동 회로 및 S/W를 활용하여 열영상을 시연하였다.

Keywords

References

  1. A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, Laser & Photonics Rev. 3, 1 (2009). https://doi.org/10.1002/lpor.200810027
  2. W. Q. Ma, X. J. Yang, M. Chong, T. Yang, L. H. Chen, J. Shao, X. Lu, W. Lu, C. Y. Song, and H. C. Lin, Appl. Phys. Lett. 93, 013502 (2008). https://doi.org/10.1063/1.2956672
  3. B. Movaghar, S. Tsao, S. Tsao, S. A. Pour, T. Yamanaka, and M. Razeghi, Phys. Rev. B 78, 115320 (2008). https://doi.org/10.1103/PhysRevB.78.115320
  4. E. -T. Kim, Z. Chen, and A. Madhukar, J. Korean Phys. Soc. 49, 837 (2006).
  5. H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008). https://doi.org/10.1063/1.2920764
  6. E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Sharma, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007). https://doi.org/10.1063/1.2790078
  7. S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008). https://doi.org/10.1063/1.2909538
  8. D. L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987). https://doi.org/10.1063/1.339468
  9. H. Mohseni, V. I. Litvinov, and M. Razeghi, Phys. Rev. B 58, 15378 (1998). https://doi.org/10.1103/PhysRevB.58.15378
  10. S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  11. S. J. Lee, S. K. Noh, E. Plis, S. Krishna, and K.-S. Lee, Appl. Phys. Lett. 95, 102106 (2009). https://doi.org/10.1063/1.3212738
  12. H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, Appl. Phys. Lett. 96, 033502 (2010). https://doi.org/10.1063/1.3275711
  13. R. Magri and A. Zunger, J. Vac. Sci. Technol. B, 21, 1896 (2003). https://doi.org/10.1116/1.1589519
  14. C. Petchsingh, R. J. Nicholas, K. Takashina, and N. J. Mason, Semicond. Sci. Technol. 22, 194 (2007). https://doi.org/10.1088/0268-1242/22/3/004
  15. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007). https://doi.org/10.1063/1.2800808
  16. E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Sharma, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007). https://doi.org/10.1063/1.2790078
  17. A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007). https://doi.org/10.1063/1.2824819
  18. R. Intartaglia, G. Raino, V. Tasco, F. D. Sala, R. Cingolani, A. N. Baranov, N. Deguffro, E. Tournie, B. Satpati, A. Trampert, and M. De Giorgi, J. Appl. Phys. 103, 114516 (2008). https://doi.org/10.1063/1.2938063
  19. S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008). https://doi.org/10.1063/1.2909538
  20. S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008). https://doi.org/10.1063/1.2909538
  21. A. Khoshakhlagh, H. S. Kim, S. Myers, N. Gautam, S. J. Lee, E. Plis, S. K. Noh, L. R. Dawson, and S. Krishna, Proc. of SPIE 7298, 72981P-1 (2009).
  22. S. J. Lee, S. K. Noh, L. R. Dawson, and S. Krishna, J. Korean Phys. Soc. 54, 280 (2009). https://doi.org/10.3938/jkps.54.280
  23. J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 245 (2009). https://doi.org/10.5757/JKVS.2009.18.4.245
  24. J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 108 (2009). https://doi.org/10.5757/JKVS.2009.18.2.108
  25. H.W. Shin, J.W. Choe, J.O. Kim, S.J. Lee, C.S. Kim, and S.K. Noh, J Korean Vac. Soc. 20, In print (2011).

Cited by

  1. nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Long Wave Infrared Detection vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.327
  2. A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers vol.21, pp.5, 2012, https://doi.org/10.5757/JKVS.2012.21.5.264