Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine

합곡과 대장의 중추신경로와의 연계성에 관한 연구

  • Lee, Chang-Hyun (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Jeong, Han-Sol (Department of Anatomy, College of Oriental Medicine, Woosuk University)
  • 이창현 (부산대학교 한의학전문대학원 응용의학부) ;
  • 정한솔 (우석대학교 한의과대학 해부학교실)
  • Received : 2011.02.23
  • Accepted : 2011.04.11
  • Published : 2011.04.25

Abstract

The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Keywords

References

  1. 박희준. 경락연구의 현황. 과학사상, pp 148-160, 1993.
  2. 中谷義雄. 良導絡的全貌, 漢方的臨床, 3(7):54-60, 1956.
  3. 孫平生, 趙玉卓, 李玉蘭, 閻清連, 劉宏. 定量低頻聲信息沿人體 体體表經絡经络船路傳道特異性的對比觀察. 遼寧中醫雜誌 9: 68-74, 1993.
  4. H.U. Xiang-Long, X.U. Jin-Sen, Y.E. Lei, YANG Jie, WANG Pei-Qing, W.U. Bao-Hua. Elicitation of infrared radiant track along meridian courses over human body surface by local heating. Journal of Infrared and Millimeter Waves 21(1):6-11, 2002.
  5. de Vernejoul, P., Darras, J.C., Beguin, C., Cazalaa, J.B., Daury, G., de Vernejoul, J. Isotopic approach to the visualization of acupuncture meridians. Agressologie, Nov 25(10):1107-1111, 1984.
  6. Card, J.P., Rinaman, L., Schwaber, J.S., Miselis, R.R., Whealy, M.E., Robbins, A.K., et al. Neurotropic properties of pseudorabies virus: Uptake and transneuronal passage in the rat central nervous system. J Neurosci 10(6):1976-1994, 1990.
  7. 전국한의과대학 침구․경혈학교실. 침구학(상). 서울, 집문당, p 503, 1998.
  8. 胡翔龍: 中國經絡研究十年, 中國, 鍼灸, 7: 389-393, 1999.
  9. Plummer, J.P. Anatomical findings at acupuncture loci. Am J Chin Med 8(2):170-180, 1980. https://doi.org/10.1142/S0192415X8000013X
  10. Masher, E.L. International Chinese Medicine 2(1):27, 1985.
  11. 倉林讓. 皮膚電氣抵抗減弱部探索經穴經絡의 組織所見, 日本鍼灸治療學會誌 27(2), 1979.
  12. Gunn, C.C., Ditchburn, F.G., King, M.H., Renwick, G.J. Acupuncture loci: a proposal for their classification according to their relationship to known neural structures Am J Chin Med 4(2):183-195, 1976. https://doi.org/10.1142/S0192415X76000238
  13. Tiberiu, R., Gheorghe, G., Popescu, S. Do meridians of acupuncture exist? A radioactive tracer study of the bladder meridian. Am J Acupuncture 9: 251-256, 1981.
  14. Bratila, F.L. International Chinese Medicine 2(1):148, 1985.
  15. Hashimoto, P.H. The perineurial vessel - A possible candidate for the structural basis of the meridian(Jing-Luo) in Chinese medicine. Anatomical Science International 80: 177-180, 2005. https://doi.org/10.1111/j.1447-073X.2005.00118.x
  16. Johng, H.M., Yoo, J.S., Yoon, T.J., Shin, H.S., Le,e B.C., Lee, C.H., Lee, J.K., Soh, K.S. Use of Magnetic Nanoparticles to Visualize Threadlike Structures Inside Lymphatic Vessels of Rats. eCAM 4(1):77-82, 2007.
  17. Cohen, D.H., Schnell, A.M., MacDonald, R.L., Pitts, L.H. Medullary cells of origin of vagal cardioinhibitory fibers in the pigeon. J Comp Neurol 140: 299-342, 1970. https://doi.org/10.1002/cne.901400305
  18. Kristensson, L. Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol(Berl) 16: 293-300, 1970. https://doi.org/10.1007/BF00686894
  19. Ewart, W.R., Jones, M.V., King, B.F. Central origin vagal nerve fibres innervating the fundus and corpus of the stomach in rat. J Auton Nerv Syst 25: 219-231, 1988. https://doi.org/10.1016/0165-1838(88)90026-4
  20. Elfvin, L.G., Lindh, B. A study of the extrinsic innervation of the guinea pig pylorus with the horseradish peroxidase tracing technique. J Comp Neurol 208: 317-324, 1982. https://doi.org/10.1002/cne.902080402
  21. Gwyn, D.G., Leslie, R.A., Hopkins, D.A. Observations on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel monkey. J Comp Neurol 239: 163-175, 1985. https://doi.org/10.1002/cne.902390204
  22. Bieger, D., Hopkins, D.A. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat : the nucleus ambiguus. J Comp Neurol 262: 546-562, 1987. https://doi.org/10.1002/cne.902620408
  23. Mcconnie, R.M., Bao, X., Altschule,r S.M. Miselis, R.R. Visceral topography in the dorsal motor nucleus(DMN) : Brain stem motor projections from the rat stomach. Gastroenterology 94: A294, 1988. https://doi.org/10.1016/0016-5085(88)90415-5
  24. Wan, X.C., Trojanowski, J.Q., Gonatas, J.O. Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes : their uptake and clearance, transganglionic and retrograde transport and sensitivity. Brain Res 243: 215-224, 1982. https://doi.org/10.1016/0006-8993(82)90244-X
  25. Norgren, RB. Jr Lehman, M.N. Herpes simplex virus as a transneuronal tracer. Neurosci Biobehav Rev 22(6):695-708, 1998. https://doi.org/10.1016/S0149-7634(98)00008-6
  26. Card, J.P., Enquis,t L.W. Use of pseudorabies virus for definition of synaptically linked neurons. Methods Mol Genet 4: 363-382, 1994.
  27. Strack, A.M., Sawyer, W.B., Platt, K.B., Loewy, A.D. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res 491: 274-296, 1989. https://doi.org/10.1016/0006-8993(89)90063-2
  28. Marson, L., Platt, K.B., McKenna, K.E. Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neurosci 55: 263-280, 1993. https://doi.org/10.1016/0306-4522(93)90471-Q
  29. Loewy, A.D., Haxhiu, M.A. CNS cell groups projecting to pancreatic parasympathetic preganglionic neurons. Brain Res 620: 323-330, 1993. https://doi.org/10.1016/0006-8993(93)90174-L
  30. Schramm, L.P., Strack, A.M., Platt, K.B., Loewy, A.D. Peripheral and central pathways regulating the kidney: A study using pseudorabies virus. Brain Res 616: 251-262, 1993. https://doi.org/10.1016/0006-8993(93)90216-A
  31. Standish, A., Enquist, L.W., Schwaber, J.S. Innervation of the heart and its medullary origin defined by viral tracing. Science 263: 232-234, 1994. https://doi.org/10.1126/science.8284675
  32. 강창수, 이상룡, 이창현, 남용재, 이광규. 대장과 관련된 경혈들의 신경해부학적 연구. 대한침구학회지 17: 95-117, 2000.
  33. Lee, C.H., Jung, H.S., Lee, T.Y., Lee, S.Y., Yuk, S.W., Lee, K.G., et al. Studies of the central neural pathways to the stomach and Zusanli(ST36). Am J Chin Med 29(2):211-220, 2001. https://doi.org/10.1142/S0192415X01000241
  34. Jang Insoo, Cho Kiho, Moon Sangkwan, Ko Changnam, Lee Bonghee, Ko Byungmoon, et al. A study on the central neural pathway of the heart, Nei-kuan(EH-6) and Shen-Men(He-7) with neural tracer in rats. Am J Chin Med 31(4):591-609, 2003. https://doi.org/10.1142/S0192415X03001314
  35. Cervero, F. Somatic and visceral inputs to the thoracic spinal cord of the cat: Effects of noxious stimulation of the biliary system. J Physiol 337: 51-67, 1983. https://doi.org/10.1113/jphysiol.1983.sp014611
  36. McMahon, S.B., Morrison, J.F.B. Two group of spinal interneurons that respond to stimulation of the abdominal viscera of the cat. J Physiol 322: 21-34, 1982. https://doi.org/10.1113/jphysiol.1982.sp014019
  37. Taylor, D.F.M. Reflex effects of slow bladder filling on the blood pressure in cats. Q J Exp Physiol 50: 263-270, 1965. https://doi.org/10.1113/expphysiol.1965.sp001791
  38. Hick, V.E. Vesicosympathetic reflexes mediated by hypogastric nerve afferents in the cat. J Physiol 290: 49, 1979.
  39. Garrett, J.R., Howard, E.R., Jones, W. The internal anal sphincter in the cat : a study of nervous mechanics affecting tone and reflex activity. J Physiol 243: 153-166, 1974. https://doi.org/10.1113/jphysiol.1974.sp010747
  40. Hofstetter, C.P., Card, J.P., Olson, L. A spinal cord pathway connecting primary afferents to the segmental sympathetic out flow system. Experimental Neurology 194: 128-138, 2005. https://doi.org/10.1016/j.expneurol.2005.01.028
  41. Mesulam, M.M., Brushart, T.M. Transganglionic and anterograde transport of horseradish peroxidase across dorsal root ganglia: a tetramethylbenzidine method for tracing central sensory connections of muscles and peripheral nerves. Neuroscience 4: 1107-1117, 1979. https://doi.org/10.1016/0306-4522(79)90192-1
  42. Ciriello, J., Calaresu, Fr. Central projections of afferent renal fibers in the rat: an anterograsde transport study of horseradish peroxidase. J Auton Nerv syst 8: 273-285, 1983. https://doi.org/10.1016/0165-1838(83)90110-8
  43. Neuhuber, W.L., Sandoz, P.A., Fryscak, T. The central projections of primary afferent neurons of greater splanchnic and intercostal nerves in the rat. a horseradish peroxidase study. Anat Embryol(Berl) 174: 123-144, 1986.
  44. 王肇普. 臨床實用點穴療法, 北京:中國古籍出版社, pp 69-70, 1989.
  45. Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardol J, Saavedra J.N., Reis, D.J. Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or chemical stimulation of C1 adrenaline containing neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin. J Neurosci 4: 474-494, 1984. https://doi.org/10.1523/JNEUROSCI.04-02-00474.1984
  46. Barman, S.M., Gebber, G.L. Axonal projection patterns ventrolateral medullospinal sympatoexcitatory neurons. J Neurophysiol 53: 1551-1556, 1985. https://doi.org/10.1152/jn.1985.53.6.1551
  47. Mehler, W.R., Feferman, M.E., Nauta, W.J.H. Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey. Brain Res 83: 718-752, 1960.
  48. Saper, C.B., Loewey, A.D., Swanson, L.W., Cowan, W.M. Direct hypothalamo-autonomic connections. Brain Res 117: 305-312, 1976. https://doi.org/10.1016/0006-8993(76)90738-1
  49. Carrive, P., Bandler, R., Dampney, R.A.L. Anatomical evidence that hypertension associated with the defence reaction in the cat is mediated by a direct projection from a restricted portion of the midbrain periaqueductal grey to the subretrofacial nucleus of the medulla. Brain Res 460: 339-345, 1988. https://doi.org/10.1016/0006-8993(88)90378-2
  50. Tucker, D.C., Saper, C.B., Ruggiero, D.A., Reis, D.J. Organization of central adrenergic pathway. I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 259: 591-603, 1987. https://doi.org/10.1002/cne.902590408
  51. Altschuler, S.M., Bao, X., Bieger, D., Hopkins, D.A., Miselis, R.R. Viscerotopic representation of the upper alimentary tract in the rat : Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283: 248-268, 1989. https://doi.org/10.1002/cne.902830207
  52. Menetrey, D., Basbaum, A.I. Spinal and trigeminal projections to the nucleus of the solitary tract : A possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255: 439-450, 1987. https://doi.org/10.1002/cne.902550310
  53. Greenwood, B., Barron, K.W. Tonic GABAA receptor-mediated neurotransmission in the dorsal vagal complex regulates intestinal motility in rats. Eur J Pharmacol 346: 197-202, 1998. https://doi.org/10.1016/S0014-2999(98)00071-5
  54. Cabot JB, Wild JM, Cohen DH : Raphe inhibition of sympathetic preganglionic neurons. Science 203: 184-186, 1979. https://doi.org/10.1126/science.758687
  55. Gilbey, M.P., Coote, J.H., MacLeod, V.H., Peterson, D.F. Inhibition of sympathetic activity by stimulating in the raphe nuclei and the role of 5-hydroxytryptamine in the effect. Brain Res 226: 131-142, 1981. https://doi.org/10.1016/0006-8993(81)91088-X
  56. Oliveras, J.L., Sierralta, F., Fardin, V., Besson, J.M. Involvement of serotoninergic systems in analgesia induced by electrical stimulation of brain stem areas. J Physiol(Paris) 77: 473-482, 1981.
  57. Cristante, L., Hinckel, P., Bruck, K. Inhibition of thermogenesis by electrical stimulation of the nucleus raphe magnus. Pflugers Arch 391: R45, 1981.
  58. Han, J.S., Terenius, L. Neurochemical basis of acupuncture analgesia. Annu Rev Pharmacol Toxicol 22: 193-220, 1982. https://doi.org/10.1146/annurev.pa.22.040182.001205
  59. Bruck, K., Hinckel, P. Thermoafferent systems and their adaptive modifications. Pharmacol Ther 17: 357-381, 1982. https://doi.org/10.1016/0163-7258(82)90021-3
  60. Kavaliers, M. Pineal mediation of the thermoregulatory and behavioral activity effects of $\beta$-endorphin. Peptides 3: 679-685, 1982. https://doi.org/10.1016/0196-9781(82)90170-X
  61. Akil, H., Mayer, D.J., Liebeskind, J.C. Antagonism of stimulation produced analgesia by naloxone, a narcotic antagonist. Science 191: 961-962, 1976. https://doi.org/10.1126/science.1251210
  62. Melzack, R., Wall, P.D. Pain mechanism : A new theory. Science 150: 971-979, 1965. https://doi.org/10.1126/science.150.3699.971
  63. Swanson, L.W. Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128: 346-353, 1977.
  64. Caverson, M.M., Ciriello, J. Contribution of paraventricular nucleus to afferent renal nerve pressor response. Am J Physiol 254: R531- 543, 1988.
  65. Ernst, M., Lee, M.H.M. Sympathetic effects of manual and electrical acupuncture of the Tsusanli knee point : Comparison with the Hoku hand point sympathetic effects. Exp Neurol 94: 1-10, 1986. https://doi.org/10.1016/0014-4886(86)90266-9