Effects of Carthami Flos on Interstitial Cells of Cajal in the Gastrointestinal Tract

홍화가 위장관 카할간질세포에 미치는 효과

  • Song, Ho-Joon (Division of Longevity and Biofunctional Medicine, Pusan National University) ;
  • Kim, Jung-A (Division of Longevity and Biofunctional Medicine, Pusan National University) ;
  • Han, Song-Ee (Division of Longevity and Biofunctional Medicine, Pusan National University) ;
  • Kim, Hyung-Woo (Division of Pharmacology School of Korean Medicine, Pusan National University) ;
  • Chae, Han (Division of Longevity and Biofunctional Medicine, Pusan National University) ;
  • Kim, Byung-Joo (Division of Longevity and Biofunctional Medicine, Pusan National University) ;
  • Kwon, Young-Kyu (Division of Longevity and Biofunctional Medicine, Pusan National University)
  • 송호준 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 김정아 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 한송이 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 김형우 (부산대학교 한의학전문대학원 약물의학부) ;
  • 채한 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 김병주 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 권영규 (부산대학교 한의학전문대학원 양생기능의학부)
  • Received : 2011.04.19
  • Accepted : 2011.07.15
  • Published : 2011.08.25

Abstract

The purpose of this study is to investigate the effects of Carthami Flos on interstitial cells of Cajal in the gastrointestinal tract. Many regions of the tunica muscularis of the gastrointestinal (GI) tract display spontaneous contraction. These spontaneous contractions are mediated by periodic generation of electrical slow waves. Recent studies have shown that the interstitial cells of Cajal (ICCs) act as pacemakers and conductors of electrical slow waves in gastrointestinal smooth muscles. We investigated the cytotoxicity activity, antioxidant activity, and pacemaking activity. The cytotoxicity activity was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Antioxidant activities were determined by DPPH (1.1-diphenyl-2-picrylhydrazyl) radical scavenging capacity assay and DCFH-DA (2,7-dichlorofluorescein diacetate) method. The effects of Carthami Flos on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by using whole-cell patch-clamp techniques at $30^{\circ}C$. The addition of Carthami Flos (5, 10, $30{\mu}g$/ml) depolarized the resting membrane potentials in a concentration dependent manner. These results suggest that the GI tract can be targets for Carthami Flos, and their interaction can affect intestinal motility.

Keywords

References

  1. 최한기. 고농서국역총서11-농정회요II (農政會要). 농촌진흥청. pp 271-277.
  2. 최성희, 임성임, 장은영, 조영수. 홍화꽃 및 홍화씨의 휘발성 성분. 한국식품과학회지 14: 36-42, 2004.
  3. 김미진, 윤경섭, 김자영, 최상원, 홍진태. Anti-wrinkle Effect of Safflower (Carthamus tinctorius) Seed Extract (I). 대한화장품학회지 30(1):15-22, 2004.
  4. Zhang, H.L., Nagatsu, A., Sakakibara, J. Novel antioxidants from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 44: 874-876, 1996. https://doi.org/10.1248/cpb.44.874
  5. Zhang, H.L., Nagatsu, A., Watanabe, T., Sakakibara, J., Okuyama, H. Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 45(12):1910-1914, 1997. https://doi.org/10.1248/cpb.45.1910
  6. Takii, T., Hayashi, M., Hiroma, H., Chiba, T., Kawashima, S., Zhang, H.L., Nagatsu, A., Sakakibara, J., Onozaki, K. Serotonin derivative, N-(p-Coumaroyl)serotonin, isolated from safflower (Carthamus tinctorius L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF). J. Biochem. 125: 910-915, 1999. https://doi.org/10.1093/oxfordjournals.jbchem.a022368
  7. Kim, M.J., Kim, J.Y., Choi, S.W., Hong, J.T., Yoon, K.S. Anti-wrinkle effect of safflower seed extract (I). J. Soc. Cosmet. Scientists. 30: 15-20, 2004.
  8. 이광현. 홍화씨로부터 추출된 세포토닌계 화합물 및 이를 함유하는 조성물. 한국공개특허 출원번호 10-2002-0008315, 2002.
  9. Kim, H.J., Bae, Y.C., Park, R.W., Choi, S.W., Cho, S.H., Choi, Y.S., Lee, W.J. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif. Tissue. Int. 71(1):88-94, 2002. https://doi.org/10.1007/s00223-001-1080-4
  10. 김미진, 김자영, 최상원, 홍진태, 윤경섭. Anti-wrinkle Effect of Safflower (Carthamus tinctorius) Seed Extract (II). 대한화장품학회지 30(4):449-456, 2004.
  11. Szurszewski, J.H. Electrical basis for gastrointestinal motility. In Physiology of the gastrointestinal tract, 2nd edn, ed. Johnson LR, Raven Press, New York, pp 383-422, 1987.
  12. Tomita, T. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscles. In Smooth Muscle: An Assessment of Current Knowledge, ed. Brading AF, Jones AW &Tomita T, Edward Arnold, London, pp 127-156, 1981.
  13. Farrugia, G. Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61: 45-84, 1999. https://doi.org/10.1146/annurev.physiol.61.1.45
  14. Cajal, S.R. Sur les ganglions et plexus nerveux de I'intestin. CR Soc Biol (Paris) 45: 217-223, 1893.
  15. Sanders, K.M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 111: 492-515, 1996. https://doi.org/10.1053/gast.1996.v111.pm8690216
  16. Heo J. Dong-I Bogam 5. 3th eds., In: Safflower. Yekang Publishers, Seoul, Korea. pp 2763-2764, 1986.
  17. Kee, C.H. The Pharmacology of Chinese Herbs. CRC press, pp 249-250, 1993.
  18. Kim, M.N., Kim, K.H. Researches for analgesic and hepatoprotective action of Carthami Flos. Pusan Bull. Pharm. Sci. 26: 32-36, 1992.
  19. Cleary, M.P., Phillips, F.C., Morton, R.A. Genotype and diet effects in lean and obese Zucker rats fed either safflower or coconut oil diets. Proc. Soc. Exp. Biol. Mec. 220: 153-161, 1999. https://doi.org/10.1046/j.1525-1373.1999.d01-23.x
  20. Cox, C., Mann, J., Sutherland, W., Chisholm, A., Skeaff, M. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels. J. Lipid Res. 36: 1787-1795, 1995.
  21. Iwata, T., Ohya, K., Takehisa, F., Tsutsumi, K., Furukawa, Y., Kimura, S. The effect of dietary safflower phospholipid on sterols in gastrointestinal tract of rats fed a hypercholesterolemic diet. J. Nutr. Sci. Vitaminol. 38: 615-622, 1992. https://doi.org/10.3177/jnsv.38.615
  22. 최영주, 최상욱. 홍화(Carthamus tinctorius L.)씨의 sterol 및 phytoestrogen 분석. Korean Journal of Life Science 13(4):529-534, 2003. https://doi.org/10.5352/JLS.2003.13.4.529
  23. 한국생약교수협의회. 본초학. 사단법인 약사회. pp 553-555, 1995.
  24. 이인우, 최진규. 홍화씨 건강법. 태일출판사, pp 45-70, 1998.
  25. Tokutomi, N., Maeda, H., Tokutomi, Y., Sato, D., Sugita, M., Nishikawa, S., Nishikawa, S., Nakao, J., Imamura, T., Nishi, K. Rhythmic Cl- current and physiological roles of the intestinal c-kit positive cells. Pflugers Arch. 431: 169-177, 1995. https://doi.org/10.1007/BF00410188
  26. Ward, S.M., Morris, G., Reese, L., Wang, X.Y., Sanders, K.M. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 115: 314-329, 1998. https://doi.org/10.1016/S0016-5085(98)70198-2
  27. Koh, S.D., Sanders, K.M., Ward, S.M. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J. Physiol. 513: 203-213, 1998. https://doi.org/10.1111/j.1469-7793.1998.203by.x
  28. Huizinga, J.D., Thuneberg, L., Klüppel, M., Malysz, J., Mikkelsen, H.B., Bernstein, A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373: 347-349, 1995. https://doi.org/10.1038/373347a0