DOI QR코드

DOI QR Code

The Statistical Analysis for the fate of Antibiotic Resistance according to the Spatial and Operational Wastewater Treatment Factors

하수 처리시설의 공간 및 운전인자에 따른 항생제 내성의 통계학적 분석

  • 김성표 (고려대학교 환경시스템공학과) ;
  • 조윤철 (고려대학교 환경기술정책연구소) ;
  • 김이형 (공주대학교 건설환경공학부) ;
  • 카틱 챤드란 (컬럼비아대학교 지구환경공학과)
  • Received : 2011.03.18
  • Accepted : 2011.04.25
  • Published : 2011.04.30

Abstract

The aim of this study was to examine the fate of tetracycline resistant bacteria (TRB) and tetracycline resistant genes (TRG) according to the spatial and operational wastewater treatment factors. As part of the effort, TRB and TRG of water samples at each unit processes of three different wastewater treatment plants (WWTPs) were analyzed over seven month study periods. With the data about different spatial and operating conditions of these WWTPs, TRB and TRGs, principal component analysis (PCA) was performed to find out any general correlation trend. Based on the statistic analysis results, the extent of TRB concentration in the activated sludge (TRBAS) is much related to the TRB concentration in primary clarifier effluent (TRBPE). Also, the study results indicated that the fate of TRB and TRG are significantly affected by the SRT variations.

본 연구의 목적은 하수처리장의 공간적 그리고 운전인자에 따른 테트라싸이클린 내성균(TRB) 및 테트라싸이클린 내성 유전자(TRG)들의 거동을 파악하는데 있다. 이를 위한 노력으로, 세 개의 실제 다른 하수처리장내에서 7개월 이상 각각의 반응조별로 시료를 채취하여 TRB 및 TRG가 분석되었다. 통계 기법은 주성분분석(PCA)을 통해 이들 간에 어떠한 일반적 관계식이 성립하는지 알아보려 노력하였다. 통계 분석결과, 활성슬러지내에 TRB 농도는 1차 침전 유입수에 있는 TRB 농도에 많은 영향을 받는 것을 알 수 있었다. 또한, 본 연구를 통해 TRB와 TRG의 내거동이 하수처리장 SRT 조건에 많이 영향을 받는 것을 알 수 있었다.

Keywords

References

  1. 김성표 (2006). 생물학적 하수처리장에서 테트라싸이클린 저항 세균의 거동. 한국물환경학회, 22(3), pp. 527-533.
  2. 내일 신문, 다제내성균 환자 2명 추가 발견, 2010년 12월 14일자
  3. http://www.naeil.com/News/economy/ViewNews.asp?nnum=586144&sid=E&tid=4
  4. 허명회, 양경숙 SPSS 다변량자료분석, 한나래 출판사, 2007
  5. Aminov, R.I., Chee-Sanford, J.C., Garrigues, N., Teferedegne, B., Krapac, I.J., White, B.A., Mackie, R.I., 2002. Development Validation, and Application of PCR Primers for Detection of Tetracycline Efflux Genes of Gram-Negative Bacteria. Appl. Environ. Microbiol. 68, 1786-1793. https://doi.org/10.1128/AEM.68.4.1786-1793.2002
  6. Aminov, R.I., Garrigues-Jeanjean, N., Mackie, R.I., 2001. Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Appl. Environ. Microbiol. 67, 22-32. https://doi.org/10.1128/AEM.67.1.22-32.2001
  7. Auerbach, E. A., Seyfried, E. E., and McMahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res. 41(5), pp. 1143-1151. https://doi.org/10.1016/j.watres.2006.11.045
  8. Col, N. F., and O'Connor, R. W. (1987). Estimating world-wide current antibiotic usage: report of task force 1. Rev. Infect. Dis., 9(S3), pp. S232-243. https://doi.org/10.1093/clinids/9.Supplement_3.S232
  9. Iwane, T., Urase, T., and Yamamoto, K. (2001). Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol., 43(2), pp. 91-99.
  10. Kang, H., Jeong, Y., Oh, J., Tae, S., Choi, C., Moon, D., Lee, W., Lee, Y., Seol, S., Cho, D., and Lee, J. (2005). Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J. Antimicrob. Chemother., 55(5), pp. 639-644. https://doi.org/10.1093/jac/dki076
  11. Kim, S., Aga, D. S., Jensen J. N., and Weber, A., S. (2007). Effect of sequencing batch reactor operation on presence and concentration of tetracycline-resistant organisms. Water Environ. Res. 79(11), pp. 2287-2297. https://doi.org/10.2175/106143007X184087
  12. Kim, S., Park, H., and Chandran, K. (2010). Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere, 78(9), pp. 1071-1077. https://doi.org/10.1016/j.chemosphere.2009.12.068
  13. Knapp, C. W., Dolfing, J., Ehlert, P. A. I., and Graham, D. W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44(2), pp. 580-587. https://doi.org/10.1021/es901221x
  14. Macovei, L., Zurek, L., 2006. Ecology of Antibiotic Resistance Genes: Characterization of Enterococci from Houseflies Collected in Food Settings. Appl. Environ. Microbiol. 72, 4028-4035. https://doi.org/10.1128/AEM.00034-06
  15. Maier, R. M., Pepper, I. L., Gerba, C. P. (1999) Environmental Microbiology, Academic Press.
  16. Meckes, M.C., (1982). Effect of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents. Appl. Environ. Microbiol. 43, 371-377.
  17. Metcalf and Eddy. (1991). Wastewater Engineering, 3rd Ed., McGraw-Hill.
  18. Mezrioui, N., and Baleux, B. (1994). Resistance patterns of E. coli strains isolated from domestic sewage before and after treatment in both aerobic lagoon and activated sludge. Water Res., 28(11), pp. 2399-2406. https://doi.org/10.1016/0043-1354(94)90056-6
  19. Molina-Munoz, M., Poyatos, J. M, Sanchez -Peinado, M., Hontoria, E., Gonzalez-Lopez, J., Rodelas, B. (2009). Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions Sci. Total. Environ. 407(13), pp. 3994-4003. https://doi.org/10.1016/j.scitotenv.2009.03.024
  20. Ng, L.K., Martin, I., Alfa, M., Mulvey, M., 2001. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 15, 209-215. https://doi.org/10.1006/mcpr.2001.0363
  21. Pruden, A., Pei, R., Storteboom, H., and Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado Environ. Sci. Technol. 40(23), pp. 7445-7450. https://doi.org/10.1021/es060413l
  22. Roberts, M. (1996). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19(1), pp. 1-24.
  23. Salyers, A.A., Gupta, A., Wang, Y., 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12, 412-416. https://doi.org/10.1016/j.tim.2004.07.004
  24. Suzuki, M.T., Taylor, L.T., DeLong, E.F., 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays Appl. Environ. Microbiol. 66, 4605-4614. https://doi.org/10.1128/AEM.66.11.4605-4614.2000