DOI QR코드

DOI QR Code

Binding Specificity of Philyra pisum Lectin to Pathogen-Associated Molecular Patterns, and Its Secondary Structure

  • Park, Byung Tae (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Kim, Byung Sun (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Park, Heajin (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Jeong, Jaehoon (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Hyun, Hanbit (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Hwang, Hye Seong (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University) ;
  • Kim, Ha Hyung (Physical Pharmacy Laboratory, College of Pharmacy, Chung-Ang University)
  • Received : 2013.11.11
  • Accepted : 2013.11.15
  • Published : 2013.12.30

Abstract

We recently reported a Philyra pisum lectin (PPL) that exerts mitogenic effects on human lymphocytes, and its molecular characterization. The present study provides a more detailed characterization of PPL based on the results from a monosaccharide analysis indicating that PPL is a glycoprotein, and circular dichroism spectra revealing its estimated ${\alpha}$-helix, ${\beta}$-sheet, ${\beta}$-turn, and random coil contents to be 14.0%, 39.6%, 15.8%, and 30.6%, respectively. These contents are quite similar to those of deglycosylated PPL, indicating that glycans do not affect its intact structure. The binding properties to different pathogen-associated molecular patterns were investigated with hemagglutination inhibition assays using lipoteichoic acid from Gram-positive bacteria, lipopolysaccharide from Gram-negative bacteria, and both mannan and ${\beta}$-1,3-glucan from fungi. PPL binds to lipoteichoic acids and mannan, but not to lipopolysaccharides or ${\beta}$-1,3-glucan. PPL exerted no significant antiproliferative effects against human breast or bladder cancer cells. These results indicate that PPL is a glycoprotein with a lipoteichoic acid or mannan-binding specificity and which contains low and high proportions of ${\alpha}$-helix and ${\beta}$-structures, respectively. These properties are inherent to the innate immune system of P. pisum and indicate that PPL could be involved in signal transmission into Gram-positive bacteria or fungi.

Keywords

References

  1. Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91:295-298. https://doi.org/10.1016/S0092-8674(00)80412-2
  2. Lee SY, Soderhall K. Early events in crustacean innate immunity. Fish Shellfish Immunol. 2002;12:421-437. https://doi.org/10.1006/fsim.2002.0420
  3. Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  4. Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology. 2006;211:237-249. https://doi.org/10.1016/j.imbio.2005.10.016
  5. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science. 1999;284: 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  6. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  7. Lis H, Sharon N. Lectins as molecules and as tools. Annu Rev Biochem. 1986;55:35-67. https://doi.org/10.1146/annurev.bi.55.070186.000343
  8. Sharon N, Lis H. Lectins-proteins with a sweet tooth: functions in cell recognition. Essays Biochem. 1995;30:59-75.
  9. Kawabata S, Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol. 1999;23:391-400. https://doi.org/10.1016/S0145-305X(99)00019-1
  10. Kilpatrick DC. Animal lectins: a historical introduction and overview. Biochim Biophys Acta. 2002;1572:187-197. https://doi.org/10.1016/S0304-4165(02)00308-2
  11. Loris R, Hamelryck T, Bouckaert J, Wyns L. Legume lectin structure. Biochim Biophys Acta. 1998;1383:9-36. https://doi.org/10.1016/S0167-4838(97)00182-9
  12. Vasta GR, Ahmed H, Odom EW. Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr Opin Struct Biol. 2004;14: 617-630. https://doi.org/10.1016/j.sbi.2004.09.008
  13. Kim HH, Jun JI, Kim BS, Cho DH, Min TH, Kim YJ, Ryu CS. Lectin protein prepared from Korean marine crab Philyra pisum, process for preparing the same and the use thereof. US Patent. 2006;07015313.
  14. Na JC, Park BT, Chung WH, Kim HH. Molecular characterization and mitogenic activity of a lectin from purse crab Philyra pisum. Korean J Physiol Pharmacol. 2011;15:241-244. https://doi.org/10.4196/kjpp.2011.15.4.241
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Kim BS, Oh KT, Cho DH, Kim YJ, Koo WM, Kong KH, Kim HH. A sialic acid-binding lectin from the legume Maackia fauriei: comparison with lectins from M. amurensis. Plant Science. 2004;167:1315-1321. https://doi.org/10.1016/j.plantsci.2004.06.029
  17. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 1999;36:47-50. https://doi.org/10.1039/a809656b
  18. Yang JT, Wu CS, Martinez HM. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130: 208-269. https://doi.org/10.1016/0076-6879(86)30013-2
  19. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298-300 https://doi.org/10.1126/science.1068883
  20. Yu XQ, Ma Y. Calcium is not required for immulectin-2 binding, but protects the protein from proteinase digestion. Insect Biochem Mol Biol. 2006;36:505-516. https://doi.org/10.1016/j.ibmb.2006.03.010
  21. Polotsky VY, Fischer W, Ezekowitz RA, Joiner KA. Interactions of human mannose-binding protein with lipoteichoic acids. Infect Immun. 1996;64:380-383.
  22. Ip WK, Takahashi K, Moore KJ, Stuart LM, Ezekowitz RA. Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome. J Exp Med. 2008;205:169-181. https://doi.org/10.1084/jem.20071164
  23. Iwanaga S, Kawabata S. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci. 1998;3:D973-984. https://doi.org/10.2741/A337
  24. Edge AS. Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J. 2003;376:339-350. https://doi.org/10.1042/BJ20030673
  25. Belogortseva N, Molchanova V, Glazunov V, Evtushenko E, Luk'yanov P. N-Acetyl-D-glucosamine-specific lectin from the ascidian Didemnum ternatanum. Biochim Biophys Acta. 1998;1380:249-256. https://doi.org/10.1016/S0304-4165(97)00150-5
  26. Banerjee S, Chaki S, Bhowal J, Chatterjee BP. Mucin binding mitogenic lectin from freshwater Indian gastropod Belamyia bengalensis: purification and molecular characterization. Arch Biochem Biophys. 2004;421:125-134. https://doi.org/10.1016/j.abb.2003.09.040
  27. Pereyra A, Zenteno R, Vázquez L, Martinez-Cairo S, Rodriguez A, Mendoza-Hernandez G, Zenteno E, Agundis C. Characterization of lectin aggregates in the hemolymph of freshwater prawn Macrobrachium rosenbergii. Biochim Biophys Acta. 2004;1673:122-130. https://doi.org/10.1016/j.bbagen.2004.04.004
  28. Alpuche J, Pereyra A, Agundis C, Rosas C, Pascual C, Slomianny MC, Vazquez L, Zenteno E. Purification and characterization of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochim Biophys Acta. 2005;1724:86-93. https://doi.org/10.1016/j.bbagen.2005.04.014
  29. Gowda NM, Goswami U, Khan MI. Purification and characterization of a T-antigen specific lectin from the coelomic fluid of a marine invertebrate, sea cucumber (Holothuria scabra). Fish Shellfish Immunol. 2008;24:450-458. https://doi.org/10.1016/j.fsi.2008.01.002
  30. Fabrick JA, Baker JE, Kanost MR. Innate immunity in a pyralid moth: functional evaluation of domains from a beta-1,3-glucan recognition protein. J Biol Chem. 2004;279: 26605-26611. https://doi.org/10.1074/jbc.M403382200
  31. Shi WX, Shen ZM, Sun C, Yang JT. Conformation and activity of Phaseolus coccineus var. rubronanus lectin. J Protein Chem. 1993;12:153-157. https://doi.org/10.1007/BF01026036
  32. Chandra NR, Prabu MM, Suguna K, Vijayan M. Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Eng. 2001;14:857-866. https://doi.org/10.1093/protein/14.11.857
  33. Abdullaev FI, de Mejia EG. Antitumor effect of plant lectins. Nat Toxins. 1997;5:157-163.

Cited by

  1. Comparison and Optimization of Quantification Methods for Shigella flexneri Serotype 6 O-antigen Containing Galacturonic Acid and Methyl-Pentose vol.22, pp.22, 2013, https://doi.org/10.3390/ijms222212160