DOI QR코드

DOI QR Code

2-(4-Hydroxyphenyl)-5-(3-Hydroxypropenyl)-7-Methoxybenzofuran, a Novel Ailanthoidol Derivative, Exerts Anti-Inflammatory Effect through Downregulation of Mitogen-Activated Protein Kinase in Lipopolysaccharide-Treated RAW 264.7 Cells

  • Kim, Hyeon Jin (Department of Biomedical Science, College of Natural Science, Catholic University of Daegu) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Natural Medicine, Hallym University) ;
  • Kim, Jin-Kyung (Department of Biomedical Science, College of Natural Science, Catholic University of Daegu)
  • Received : 2013.03.05
  • Accepted : 2013.05.02
  • Published : 2013.06.30

Abstract

We reported that ailanthoidol, a neolignan from Zanthoxylum ailanthoides and Salvia miltiorrhiza Bunge, inhibited inflammatory reactions by macrophages and protected mice from endotoxin shock. We examined the anti-inflammatory activity of six synthetic ailanthoidol derivatives (compounds 1-6). Among them, compound 4, 2-(4-hydroxyphenyl)-5-(3-hydroxypropenyl)-7-methoxybenzofuran, had the lowest $IC_{50}$ value concerning nitric oxide (NO) release from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 4 suppressed the generation of prostaglandin (PG) $E_2$ and the expression of inducible NO synthase and cyclooxygenase (COX)-2 induced by LPS, and inhibited the release of LPS-induced pro-inflammatory cytokines from RAW264.7 cells. The underlying mechanism of compound 4 on anti-inflammatory action was correlated with the down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Compound 4 is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

Keywords

References

  1. Aller MA, Arias N, Fuentes-Julian S, Blazquez-Martinez A, Argudo S, Miguel MP, Arias JL, Arias J. Coupling inflammation with evo-devo. Med Hypotheses. 2012;78:721-731. https://doi.org/10.1016/j.mehy.2012.02.018
  2. Biasi F, Astegiano M, Maina M, Leonarduzzi G, Poli G. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr Med Chem. 2011;18:4851-4865. https://doi.org/10.2174/092986711797535263
  3. Kim JK, Jun JG. Ailanthoidol suppresses lipopolysaccharidestimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J Cell Biochem. 2011;112:3816-3823. https://doi.org/10.1002/jcb.23312
  4. Lee YJ, Kao ES, Chu CY, Lin WL, Chiou YH, Tseng TH. Inhibitory effect of ailanthoidol on 12-O-tetradecanoyl-phorbol- 13-acetate-induced tumor promotion in mouse skin. Oncol Rep. 2006;16:921-927.
  5. Lee WS, Baek YI, Kim JR, Cho KH, Sok DE, Jeong TS. Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg Med Chem Lett. 2004;14:5623- 5628. https://doi.org/10.1016/j.bmcl.2004.08.054
  6. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3- arylbutan- 1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1- [4- (aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem. 2009; 44:2632-2635. https://doi.org/10.1016/j.ejmech.2008.09.029
  7. Lin SY, Chen CL, Lee YJ. Total synthesis of ailanthoidol and precursor XH14 by Stille coupling. J Org Chem. 2003;68: 2968-2971. https://doi.org/10.1021/jo020653t
  8. Rao MLN, Awasthi DK, Banerjee D. An expeditious and convergent synthesis of ailanthoidol. Tetrahedron Lett. 2010; 51:1979-1981. https://doi.org/10.1016/j.tetlet.2010.02.018
  9. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826-837. https://doi.org/10.1038/nri2873
  10. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451-483. https://doi.org/10.1146/annurev.immunol.021908.132532
  11. Natoli G, Ghisletti S, Barozzi I. The genomic landscapes of inflammation. Genes Dev. 2011;25:101-106. https://doi.org/10.1101/gad.2018811
  12. Lee LR, Lee JJ, Kim, Jun JG. Ailanthoidol derivatives and their anti-inflammatory effects. Bull Korean Chem Soc. 2012; 33:1907-1912. https://doi.org/10.5012/bkcs.2012.33.6.1907
  13. Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NFkappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007;81:1602-1614. https://doi.org/10.1016/j.lfs.2007.09.028
  14. Shaulian E. AP-1--The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22:894-899. https://doi.org/10.1016/j.cellsig.2009.12.008
  15. Kawada N, Moriyama T, Kitamura H, Yamamoto R, Furumatsu Y, Matsui I, Takabatake Y, Nagasawa Y, Imai E, Wilcox CS, Rakugi H, Isaka Y. Towards developing new strategies to reduce the adverse side-effects of nonsteroidal anti-inflammatory drugs. Clin Exp Nephrol. 2012;16:25-29. https://doi.org/10.1007/s10157-011-0492-3
  16. Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm Drug Dispos. 2011;32:427-445. https://doi.org/10.1002/bdd.771
  17. Pontiki E, Hadjipavlou-Litina D, Litinas K, Nicolotti O, Carotti A. Design, synthesis and pharmacobiological evaluation of novel acrylicacid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. Eur J Med Chem. 2011;46:191-200. https://doi.org/10.1016/j.ejmech.2010.10.035
  18. Altavilla D, Squadrito F, Bitto A, Polito F, Burnett BP, Di Stefano V, Minutoli L. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages. Br J Pharmacol. 2009;157:1410-1418. https://doi.org/10.1111/j.1476-5381.2009.00322.x
  19. Sharma N, Mohanakrishnan D, Shard A, Sharma A, Saima, Sinha AK, Sahal D. Stilbene-chalcone hybrids: design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J Med Chem. 2012;55:297-311.
  20. Karapetyan G, Chakrabarty K, Hein M, Langer P. Synthesis and bioactivity of carbohydrate derivatives of indigo, its isomers and heteroanalogues. Chem Med Chem. 2011;6:25-37. https://doi.org/10.1002/cmdc.201000374
  21. Silvia V, Baldisserotto A, Scalambra E, Malisardi G, Durini E, Manfredini S. Novel molecular combination deriving from natural aminoacids and polyphenols: Design, synthesis and free-radical scavenging activities. Eur J Med Chem. 2012;50: 383-392. https://doi.org/10.1016/j.ejmech.2012.02.018
  22. Fokialakis N, Magiatis P, Mitaku S, Pratsinis H, Tillequin F. Estrogenic activity of phenylpropanoids from Sarcomelicope megistophylla and structure determination of a new norneolignan. Planta Med. 2003;69:566-568. https://doi.org/10.1055/s-2003-40642
  23. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723-737. https://doi.org/10.1038/nri3073
  24. Vesely PW, Staber PB, Hoefler G, Kenner L. Translational regulation mechanisms of AP-1 proteins. Mutat Res. 2009; 682:7-12. https://doi.org/10.1016/j.mrrev.2009.01.001
  25. Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 2009;9:778-788. https://doi.org/10.1038/nri2655
  26. Schonthaler HB, Guinea-Viniegra J, Wagner EF. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis. 2011;70 Suppl 1:i109-112. https://doi.org/10.1136/ard.2010.140533

Cited by

  1. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/3140267