DOI QR코드

DOI QR Code

Pulse Wave Velocity Measured by Radial Artery Clip-type Pulsimeter Equipped with a Hall Device and Electrocardiogram

홀소자가 구비된 요골동맥 집게형맥진기와 심전도로 측정된 맥파전달속도

  • Lee, Kyu-Hwan (Department of Oriental Biomedical Engineering, College of Health and Sciences, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, College of Health and Sciences, Sangji University)
  • 이규환 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이상석 (상지대학교 보건과학대학 한방의료공학과)
  • Received : 2013.07.20
  • Accepted : 2013.08.20
  • Published : 2013.08.31

Abstract

The clip-type pulsimeter equipped with a magnetic sensing Hall device and the most popular body sign of the electrocardiogram (ECG) were investigated in order to analyze the pulse wave velocity (PWV). The PWV simultaneously calculated by means of time difference between the maximum peak of ECG pulse wave and the starting point of radial artery pulse wave, and distance difference between the heart position and the radial wrist position. The PWV analyzed from the clinical data was a wider scope of 5~7 m/s with an average value of 6 m/s. By the prediction of blood vessel's elasticity from the analysis of PWV, it may be useful for developing an oriental-western diagnostic medical signal device for a U-health-care system in the future.

자성센싱 홀소자가 구비된 집게형 맥진기와 대중적인 생체신호를 측정하는 심전도를 이용하여 맥파전달속도(PWV)를 조사하였다. 동시 측정된 심전도파의 피크치와 요골동맥파의 시작점의 시간차 그리고 심장과 손목간의 거리차를 가지고 맥파전달속도를 계산하였다. 임상데이터로부터 분석된 PWV값은 5~7 m/s의 범위 안에 평균 6 m/s이었다. 맥파전달속도 분석을 통한 혈관탄성도를 예측함으로써, 미래의 한양방 협진용 건강관리 의료기기에서 제시하는 주요 지수로 응용할 수 있는 가능성을 확인하였다.

Keywords

References

  1. D. H. Nam, W. B. Lee, Y. S. Hong, and S. S. Lee, Sensors 13, 4714 (2013). https://doi.org/10.3390/s130404714
  2. P. A. Shaltis, A. T. Reisner, and H. H. Asada, IEEE Trans. Biomed. Eng. 55, 1775 (2008). https://doi.org/10.1109/TBME.2008.919142
  3. S. S. Lee, J. G. Choi, I. H. Son, K. H. Kim, D. H. Nam, Y. S. Hong, W. B. Lee, D. G. Hwang, and J. R. Rhee, J. Magnetics 16, 449 (2011). https://doi.org/10.4283/JMAG.2011.16.4.449
  4. S. S. Lee, I. H. Son, J. G. Choi, D. H. Nam, Y. S. Hong, and W.B. Lee, J. Kor. Phys. Soc. 58, 349 (2011). https://doi.org/10.3938/jkps.58.349
  5. S. S. Lee, D. H. Nam, Y. S. Hong, W. B. Lee, I. H. Son, K. H. Kim, and J. G. Choi, Sensors 11, 1784 (2011). https://doi.org/10.3390/s110201784
  6. M. Malik, P. Farbom, V. Batchvarov, K. Hnatkova, and J. Camm, Heart 87, 220 (2002). https://doi.org/10.1136/heart.87.3.220
  7. J. R. Sommer and E. A. Johnson, J. Cell Bio. 36, 497 (1968). https://doi.org/10.1083/jcb.36.3.497
  8. M. F. P. O'Rourke, R. P. Kelly, and A. P. Avolio, Arterial Pulse, 1st ed., Lea & Febiger, Philadelphia, USA (1992).
  9. J. C. Bramwell and A. V. Hill, Pro. Royal Soc. London 93, 298 (1922). https://doi.org/10.1098/rspb.1922.0022
  10. E. Zierler and D. S. Sumner, Physiologic assessment of peripheral arterial occlusive disease, in Rutherford RB (ed): Vascular Surgery. 6th ed. Philadelphia, Elsevier (2005).
  11. R. Asmar, A. Benetos, G. London, C. Hugue, Y. Weiss, J. Topouchian, B. Laloux, and M. Safar, Blood Press. 4, 48 (1995). https://doi.org/10.3109/08037059509077567
  12. Q. Yu, J. Zhou, and Y. C. Fung, Heart Circul. Physiol. 265, 52 (1993).