DOI QR코드

DOI QR Code

대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구

A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding

  • 김진연 (기상청관측기반국국가태풍센터) ;
  • 민기홍 (경북대학교대기원격탐사연구소) ;
  • 김경익 (경북대학교천문대기과학과) ;
  • 이규원 (경북대학교천문대기과학과)
  • Kim, Jinyeon (Korea Meteorological Administration, National Typhoon Center) ;
  • Min, Ki-Hong (Center for Atmospheric Remote Sensing, Kyungpook National University) ;
  • Kim, Kyung-Eak (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Gyuwon (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • 투고 : 2013.07.01
  • 심사 : 2013.08.05
  • 발행 : 2013.09.30

초록

A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.

키워드

참고문헌

  1. 김대준, 김동호, 전재목, 홍근도, 2010: 제주지역중 규모대설발생 메커니즘 연구, 한국기상학회가을학술대회논문집, 206-207.
  2. 김태수, 이봉수, 장태준, 2008: 저기압(기압골)이동경로에 따른 충청지방대설특성연구, 한국기상학회가을학술대회논문집, 254-255.
  3. 나득균, 정병주, 홍성유, 서명석, 2005: 2004년 3월 4-5일 한반도대설사례의 역학.열역학적특성에 관한 수치연구. 한국기상학회지, 41, 387-399.
  4. 문길태, 김홍진 1982: 1981년 1월 14일-16일사이의저기압에 동반된 대설의 특성연구, 한국기상학회지, 18, 22-32.
  5. 박상규, 이태영, 2005: 겨울철 동해상에서 발생하는 중규모 저기압 발생의 사례 연구, 한국기상학회 봄철 학술대회논문집, 34-35.
  6. 이진화, 은승희, 김병곤, 한상옥, 2012: 영동지역대설사례의 대기하층 안정도분석, 대기, 22, 209-219.
  7. 이홍란, 김경익, 유정문, 민경덕, 2001: 대류권계면파상운동에 의해 발생한 한반도 겨울철 악기상의 연구. 한국기상학회지, 37, 195-224.
  8. 이홍란, 김경익, 유정문, 이우진. 2002: 급격히 발달하는 저기압과 관련된 대류권 계면파상운동 한국기상학회지, 38, 431-463.
  9. 정성훈, 변건영, 이태영, 2006: 발생기구에 근거한 한반도강설의 유형분류, 대기, 16, 33-48.
  10. 조경미, 2007: A Case study of the polar low developed off the south-east coast of the Korean peninsula on 5 March, 2005. 서울대학교대학원 석사학위논문, 67 pp.
  11. Bell, G. D., and L. F. Bosart, 1993: A case study diagnosis of the formation of an upper-level cutoff cyclonic circulation over the eastern United States. Mon. Wea. Rev., 121, 1635-1655. https://doi.org/10.1175/1520-0493(1993)121<1635:ACSDOT>2.0.CO;2
  12. Bithell, M., L. J. Gray, and B. D. Cox, 1999: A threedimensional view of the evolution of midlatitude stratospheric intrusions, J. Atmos. Sci., 56, 673-688. https://doi.org/10.1175/1520-0469(1999)056<0673:ATDVOT>2.0.CO;2
  13. Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046-1053. https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
  14. Browning, K. A., A. J. Thorpe, A. Montani, D. Parsons, M. Griffiths, P. Panagi, and E. M. Dicks, 2000: Interactions of tropopause depressions with an ex-tropical cyclone and sensitivity of forecasts to analysis errors. Mon. Wea. Rev., 128, 2734-2755. https://doi.org/10.1175/1520-0493(2000)128<2734:IOTDWA>2.0.CO;2
  15. Businger, S., and R. J. Reed, 1989: Cyclogenesis in cold air masses. Wea. Forecasting, 2, 133-156.
  16. Businger, S., and J.-J. Baik, 1991: An Arctic Hurricane over the Bering. Mon. Wea. Rev., 119, 2293-2322. https://doi.org/10.1175/1520-0493(1991)119<2293:AAHOTB>2.0.CO;2
  17. Chen, X. L., Y. M. Ma, H. Kelder, Z. Su, and K. Yang, 2011: On the behaviour of the tropopause folding events over the Tibetan Plateau. Atmos. Chem. Phys., 11, 5113-5122. https://doi.org/10.5194/acp-11-5113-2011
  18. Fu, G., H. Niino, R. Kimura, and T. Kato, 2004: A Polar Low over the Japan Sea on 21 January 1997. Part I: Observational Analysis. Mon. Wea. Rev., 132, 1537-1551. https://doi.org/10.1175/1520-0493(2004)132<1537:APLOTJ>2.0.CO;2
  19. Harrold, T. W., and K. A. Browning, 1969: The polar low as a baroclinic disturbance. Quart. J. Roy. Meteor. Soc., 95, 710-723. https://doi.org/10.1002/qj.49709540605
  20. Hirschberg, P. A., and J. M. Fritsch, 1991: Tropopause undulations and the development of extratropical cyclones. Part I: Overview and observations from a cyclone event. Mon. Wea. Rev., 119, 496-517. https://doi.org/10.1175/1520-0493(1991)119<0496:TUATDO>2.0.CO;2
  21. Holton, J. R., 2004: An Introduction to Dynamic Meteorology, 4th ed. Academic Press Inc., 535 pp.
  22. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic pontential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946. https://doi.org/10.1002/qj.49711147002
  23. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40- year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  24. Kim, Y. M., Y.-H. Youn, and H.-S. Chung, 2004: Potential vorticity thinking as an aid to understanding mid-latitude weather systems. J. Korean Meteor. Soc., 40, 633-647.
  25. Kurz, M., 1994: The role of diagnostic tools in modern weather forecasting. Met. Apps., 1, 45-67.
  26. Lee, H. R., 2007: Development mechanism of a wintertime explosive cyclone; a case study. Ph.D. thesis, Kyungpook National Univ., 155 pp.
  27. Montgomery, M. T., and B. F. Farrell., 1992: Polar Low Dynamics, J. Atmos. Sci., 49, 2484-2505. https://doi.org/10.1175/1520-0469(1992)049<2484:PLD>2.0.CO;2
  28. Rassmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Met. Soc., 105, 531-549. https://doi.org/10.1002/qj.49710544504
  29. Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338-349. https://doi.org/10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2
  30. Reed, R. J., 1979: Cyclogenesis in polar air streams. Mon. Wea. Rev., 107, 38-52. https://doi.org/10.1175/1520-0493(1979)107<0038:CIPAS>2.0.CO;2
  31. Reed, R. J., and C. N. Duncan, 1987: Baroclinic instability as a mechanism for the serial development of polar lows: a case study. Tellus, 39A, 376-384. https://doi.org/10.1111/j.1600-0870.1987.tb00314.x
  32. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  33. Sunder, J., B. Rosting, L. A. Breivik, K. H. Midtbo, and C. Ulstad, 1994: Operational monitoring and forecasting of mesoscale weather phenomena in ocean regions surrounding Norway. Meteor. Appl., 1, 237-245.
  34. Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Walsh, 1985: The president's day cyclone of 18-19 February 1979: influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 941-961. https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2
  35. WMO (World Meteorological organization), 1986: Atmospheric Ozone 1985: Global Ozone Research and Monitoring Report. Rep. No. 16, WMO, Geneva, Switzerland, 392 pp.
  36. WMO (World Meteorological organization), 1992: International Meteorological Vocabulary. Geneva, Switzerland, 784 pp.
  37. Yanase, W., G. Fu, H. Niino, and T. Kato, 2004: A polar Low over the Japan Sea on 21 January 1997. Part 2: A Numerical Study. Mon. Wea. Rev., 132, 1552-1574. https://doi.org/10.1175/1520-0493(2004)132<1552:APLOTJ>2.0.CO;2

피인용 문헌

  1. Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking vol.26, pp.2, 2016, https://doi.org/10.14191/Atmos.2016.26.2.227
  2. WRF Sensitivity Experiments of the Polar Low Development Accompanied by Heavy Snowfall on 11 February 2011 to Orography Specification vol.18, pp.4, 2018, https://doi.org/10.9798/KOSHAM.2018.18.4.27
  3. A Case Study on the Polar Low Developed over the Sea Near Busan on 11~12 February 2011 vol.26, pp.2, 2016, https://doi.org/10.14191/Atmos.2016.26.2.301
  4. A Case Study of Tsukuba Tornado in Japan on 6 May 2012 vol.39, pp.5, 2018, https://doi.org/10.5467/JKESS.2018.39.5.403
  5. A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017 vol.28, pp.9, 2019, https://doi.org/10.5322/JESI.2019.28.9.765