DOI QR코드

DOI QR Code

Activation of G Proteins by Aluminum Fluoride Enhances RANKL-Mediated Osteoclastogenesis

  • Park, Boryung (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry) ;
  • Yang, Yu-Mi (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry) ;
  • Choi, Byung-Jai (Department of Pediatric Dentistry, Yonsei University College of Dentistry) ;
  • Kim, Min Seuk (Department of Oral Physiology, College of Dentistry, Wonkwang University) ;
  • Shin, Dong Min (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry)
  • 투고 : 2013.06.05
  • 심사 : 2013.07.15
  • 발행 : 2013.10.30

초록

Receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclastogenesis is accompanied by intracellular $Ca^{2+}$ mobilization in a form of oscillations, which plays essential roles by activating sequentially $Ca^{2+}$/calmodulin-dependent protein kinase, calcineurin and NFATc1, necessary in the osteoclast differentiation. However, it is not known whether $Ca^{2+}$ mobilization which is evoked in RANKL-independent way induces to differentiate into osteoclasts. In present study, we investigated $Ca^{2+}$ mobilization induced by aluminum fluoride ($AlF_4^-$), a G-protein activator, with or without RANKL and the effects of $AlF_4^-$ on the osteoclastogenesis in primary cultured mouse bone marrow-derived macrophages (BMMs). We show here that $AlF_4^-$ induces intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) oscillations, which is dependent on extracellular $Ca^{2+}$ influx. Notably, co-stimulation of $AlF_4^-$ with RANKL resulted in enhanced NFATc1 expression and formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells. Additionally, we confirmed that mitogen-activated protein kinase (MAPK) is also activated by $AlF_4^-$. Taken together, these results demonstrate that G-protein would be a novel modulator responsible for $[Ca^{2+}]_i$ oscillations and MAPK activation which lead to enhancement of RANKL-mediated osteoclastogenesis.

키워드

참고문헌

  1. Lee SH, Kim T, Jeong D, Kim N, Choi Y. The tec family tyrosine kinase Btk Regulates RANKL-induced osteoclast maturation. J Biol Chem. 2008;283:11526-11534. https://doi.org/10.1074/jbc.M708935200
  2. Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, Pando MP, Asano T, Verma IM, Oda H, Nakamura K, Tanaka S. Reciprocal role of ERK and NFkappaB pathways in survival and activation of osteoclasts. J Cell Biol. 2000;148:333-342. https://doi.org/10.1083/jcb.148.2.333
  3. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  4. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002; 416:744-749. https://doi.org/10.1038/416744a
  5. Yao GQ, Sun Bh, Hammond EE, Spencer EN, Horowitz MC, Insogna KL, Weir EC. The cell-surface form of colony-stimulating factor-1 is regulated by osteotropic agents and supports formation of multinucleated osteoclast-like cells. J Biol Chem. 1998;273:4119-4128. https://doi.org/10.1074/jbc.273.7.4119
  6. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM. RANKL-mediated reactive oxygen species pathway that induces long lasting $Ca^{2+}$ oscillations essential for osteoclastogenesis. J Biol Chem. 2010;285:6913-6921. https://doi.org/10.1074/jbc.M109.051557
  7. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758-763. https://doi.org/10.1038/nature02444
  8. Pereverzev A, Komarova SV, Korcok J, Armstrong S, Tremblay GB, Dixon SJ, Sims SM. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone. 2008;42:150-161. https://doi.org/10.1016/j.bone.2007.08.044
  9. Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One. 2009;4:e5705. https://doi.org/10.1371/journal.pone.0005705
  10. Kato K, Morita I. Promotion of osteoclast differentiation and activation in spite of impeded osteoblast-lineage differentiation under acidosis: effects of acidosis on bone metabolism. Biosci Trends. 2013;7:33-41.
  11. Iwai K, Koike M, Ohshima S, Miyatake K, Uchiyama Y, Saeki Y, Ishii M. RGS18 acts as a negative regulator of osteoclastogenesis by modulating the acid-sensing OGR1/NFAT signaling pathway. J Bone Miner Res. 2007;22:1612-1620. https://doi.org/10.1359/jbmr.070612
  12. Yang M, Mailhot G, Birnbaum MJ, MacKay CA, Mason-Savas A, Odgren PR. Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J Biol Chem. 2006;281:23598-23605. https://doi.org/10.1074/jbc.M602191200
  13. Strunecka A, Strunecky O, Patocka J. Fluoride plus aluminum: useful tools in laboratory investigations, but messengers of false information. Physiol Res. 2002;51:557-564.
  14. Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Crit Rev Oral Biol Med. 2003;14:100-114. https://doi.org/10.1177/154411130301400204
  15. Sui G, Fry CH, Malone-Lee J, Wu C. Aberrant $Ca^{2+}$ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium. 2009;45:456-464. https://doi.org/10.1016/j.ceca.2009.03.001
  16. Chong SA, Hong SY, Moon SJ, Park JW, Hong JH, An JM, Lee SI, Shin DM, Seo JT. Partial inhibition of SERCA is responsible for extracellular $Ca^{2+}$ dependence of AlF-4-induced $[Ca^{2+}]i$] oscillations in rat pancreatic. Am J Physiol Cell Physiol. 2003;285:C1142-1149. https://doi.org/10.1152/ajpcell.00566.2002
  17. Lau KH, Yoo A, Wang SP. Aluminum stimulates the proliferation and differentiation of osteoblasts in vitro by a mechanism that is different from fluoride. Mol Cell Biochem. 1991;105:93-105.
  18. Zaidi M, Datta HK, Moonga BS, MacIntyre I. Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol. 1990;126:473-481. https://doi.org/10.1677/joe.0.1260473
  19. Yang YM, Jung HH, Lee SJ, Choi HJ, Kim MS, Shin DM. TRPM7 Is Essential for RANKL-Induced Osteoclastogenesis. Korean J Physiol Pharmacol. 2013;17:65-71. https://doi.org/10.4196/kjpp.2013.17.1.65
  20. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95:3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  21. Sharma SM, Bronisz A, Hu R, Patel K, Mansky KC, Sif S, Ostrowski MC. MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem. 2007;282:15921-15929. https://doi.org/10.1074/jbc.M609723200
  22. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med. 2006;12:1410-1416. https://doi.org/10.1038/nm1515
  23. Feng H, Cheng T, Steer JH, Joyce DA, Pavlos NJ, Leong C, Kular J, Liu J, Feng X, Zheng MH, Xu J. Myocyte enhancer factor 2 and microphthalmia-associated transcription factor cooperate with NFATc1 to transactivate the V-ATPase d2 promoter during RANKL-induced osteoclastogenesis. J Biol Chem. 2009;284:14667-14676. https://doi.org/10.1074/jbc.M901670200
  24. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529. https://doi.org/10.1038/nrm1155
  25. Son A, Kim MS, Jo H, Byun HM, Shin DM. Effects of inositol 1,4,5-triphosphate on osteoclast differentiation in RANKL-induced osteoclastogenesis. Korean J Physiol Pharmacol. 2012;16:31-36. https://doi.org/10.4196/kjpp.2012.16.1.31
  26. Yang S, Li YP. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of $[Ca^{2+}]i$] oscillation regulation. Genes Dev. 2007;21:1803-1816. https://doi.org/10.1101/gad.1544107
  27. Sternweis PC, Northup JK, Smigel MD, Gilman AG. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981;256:11517-11526.
  28. Carter RH, Park DJ, Rhee SG, Fearon DT. Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes. Proc Natl Acad Sci USA. 1991;88:2745-2749. https://doi.org/10.1073/pnas.88.7.2745
  29. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11-21. https://doi.org/10.1038/35036035
  30. Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002;296:1636-1639. https://doi.org/10.1126/science.1071550
  31. Tomura H, Wang JQ, Liu JP, Komachi M, Damirin A, Mogi C, Tobo M, Nochi H, Tamoto K, Im DS, Sato K, Okajima F. Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J Bone Miner Res. 2008;23:1129-1139. https://doi.org/10.1359/jbmr.080236
  32. Hanami K, Nakano K, Saito K, Okada Y, Yamaoka K, Kubo S, Kondo M, Tanaka Y. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis. Bone. 2013;56:1-8. https://doi.org/10.1016/j.bone.2013.04.019
  33. Fisch TM, Prywes R, Simon MC, Roeder RG. Multiple sequence elements in the c-fos promoter mediate induction by cAMP. Genes Dev. 1989;3:198-211. https://doi.org/10.1101/gad.3.2.198
  34. Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 2006;12:1403-1409. https://doi.org/10.1038/nm1514
  35. Tanaka S, Nakamura I, Inoue J, Oda H, Nakamura K. Signal transduction pathways regulating osteoclast differentiation and function. J Bone Miner Metab. 2003;21:123-133. https://doi.org/10.1007/s007740300021
  36. Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123-150. https://doi.org/10.1196/annals.1443.016

피인용 문헌

  1. Fluoride Affects Calcium Homeostasis by Regulating Parathyroid Hormone, PTH-Related Peptide, and Calcium-Sensing Receptor Expression vol.165, pp.2, 2013, https://doi.org/10.1007/s12011-015-0245-3
  2. Attenuated RANKL-induced cytotoxicity by Portulaca oleracea ethanol extract enhances RANKL-mediated osteoclastogenesis vol.15, pp.None, 2013, https://doi.org/10.1186/s12906-015-0770-9
  3. Pasteurella multocida Toxin Triggers RANKL-Independent Osteoclastogenesis vol.8, pp.None, 2013, https://doi.org/10.3389/fimmu.2017.00185
  4. Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice vol.45, pp.3, 2013, https://doi.org/10.11620/ijob.2020.45.3.126