DOI QR코드

DOI QR Code

Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash

석탄 바닥재의 물리적 성질에 따른 유황 고형화 성형물의 특성

  • Hong, Bumui (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Choi, Changsik (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Jang, Eunsuk (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
  • 홍범의 (고등기술연구원 플랜트엔지니어링센터) ;
  • 최창식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 장은석 (고등기술연구원 플랜트엔지니어링센터) ;
  • 최석순 (세명대학교 바이오환경공학과)
  • Received : 2013.09.24
  • Accepted : 2013.11.15
  • Published : 2014.02.10

Abstract

In this work, we constructed the sulfur-solidified materials using coal bottom ash from four thermal power stations in Korea and investigated their practical data for the production of industrial construction compounds. To manufacture the sulfur-solidified materials, we used a continuous mixer with the uniaxial screw-type. Also, coal bottom ash was used as a fine aggregate below 1.2 mm because of the operation characteristics for the continuous mixer. When the sulfur-solidified materials were produced with diverse sulfur concentrations (15, 20, 25, 30 wt%), compressive strength properties were analyzed. In addition, when the coal bottom ash was used with a high calcium oxide content, crack was found in the test product and pH of submerged liquid was above 12. These experimental results could be effectively applied to the recycling technology of coal bottom ash.

본 연구에서는 국내 4개 화력발전소에서 발생되는 석탄 바닥재를 이용하여 유황 고형화 성형물을 제작하였으며, 이를 이용하여 산업용 건자재 제조를 위한 실용적 데이터에 대하여 고찰하였다. 이러한 유황 고형화 성형물 제조를 위하여, 일축 스크류 형태의 연속식 혼합기를 사용하였다. 또한, 혼합기의 운전 특성으로 인하여, 1.2 mm 이하의 잔골재로서 석탄 바닥재가 사용되었다. 15, 20, 25, 30 wt%의 다양한 유황 농도의 성형물을 제조되었을 때, 압축강도 특성이 분석 되었다. 그리고 높은 생석회 함량의 석탄 바닥재가 사용되었을 때, 시제품에서 균열이 발생하였고 침투액의 pH가 12 이상을 나타내었다. 이러한 실험 결과들은 석탄 바닥재의 재활용 기술에 효과적으로 활용될 수 있을 것이다.

Keywords

References

  1. "Green construction materials and practical techniques utilized HVCCPs", MOTIE Energy technology development (2011).
  2. S. H. Jung, Y. C. Choi, K. D. Moon, and Y. J. Choi, Development of green construction materials utilizing high volume coal combustion products, Journal of the Korean Recycled Construction Resources Institute (JRCR), 12, 169-172 (2012).
  3. B. S. Chun and Y. I. Koh, A Study on the Utilization of Coal Ash as Construction Materials, Journal of the Korean Society of Civil Engineers, 11, 99-106 (1995).
  4. W. P. Hong, J. S. Rho, H. Y. Cho, S. Y. Chung, and M. H. Kim, The Mortar Properties of Portland Cements Blended with Modified Coal Ashes, Journal of the Korean Ceramic Society, 27, 833-840 (1990).
  5. S. W. Yoo, K. G. Yu, and Y. K. Cho, Evaluation of Domestic CCPs(Coal Combustion Products) Quality by API Test Method, J. Rec. Const. Resources, 1, 49-57 (2013). https://doi.org/10.14190/JRCR.2013.1.1.049
  6. S. W. Oh, Economic Evaluation for Utilization of Bottom Ash in a Pulverized Coal Thermal Power Plant, Snagmyung Univ., 1-8 (2003).
  7. J. Y. Jeong, C. Kang, G. C. Jeonh, and J. M. Kim, The Physical Properties of Mortar used Bottom Ash, J. Korea Concr. Inst., 21, 813-816 (2007).
  8. Y. C. Jang, S. W. Lee, and J. M. Lim, Physico-chemical Characteristics and Environmental Assessment of Coal Bottom Ash from Coal-fired Power Plant for Beneficial Use, Journal of Korea Solid Wastes Engineering Society, 26, 680-688 (2009).
  9. S. J. Lee, H. T. Jou, C. M. Chon, and N. H. Kang, Developing and Assessing Geopolymers from Seochun Pond Ash with a Range of Compositional Ratios, Journal of the Korean Ceramic Society, 50, 134-141 (2013). https://doi.org/10.4191/kcers.2013.50.2.134
  10. Y. T. Kim, H. J. Kim, and C. S. Jang, Characteristics of geopolymer based on recycling resources, Journal of the Korean Crystal Growth and Crystal Technology, 22, 152-157 (2012). https://doi.org/10.6111/JKCGCT.2012.22.3.152
  11. Y. Hwang, Effect of Additives on the Compressive Strength of Geopolymerized Fly Ash, Kor. J. Mater. Res., 22, 494-498 (2012). https://doi.org/10.3740/MRSK.2012.22.9.494
  12. U. S. Patent 4,290,816 (1981).
  13. C. William, A. Mcbee, and A. Thomas, Sulfur Utilization in Asphalt Paving Materials, Advances in Chemistry, 165, 135-160 (1978). https://doi.org/10.1021/ba-1978-0165.ch008
  14. M. A. Schwartz and T. O. Llewellyn, Sulfur in Construction Materials, Advances in Chemistry, 140, 75-84 (1975). https://doi.org/10.1021/ba-1975-0140.ch005
  15. B. R. Gamble, J. E. Gillott, I. J. Jordaan, R. E. Loov, and M. A. Ward, Sivil Engineering Applications of Sulfur-Based Materials, Advances in Chemistry, 140, 154-166 (1975). https://doi.org/10.1021/ba-1975-0140.ch009
  16. S. W. Choi, V. Kim, W. S. Chang, and E. Y. Kim, The present situation of production and utilization of steel slag in korea and other countries, J. Korea Concr. Inst., 19, 28-33 (2007).
  17. B. U. Hong, C. S. Choi, J. H. Yun, M. S. Eom, and S. S. Jeon, An Experimental Study on the Compressive Strength Properties of Sulfur-Soilidified Materials using Bottom Ash Fine Aggregate, Appl. Chem. Eng., 23, 259-265 (2012).

Cited by

  1. 바텀애쉬를 이용한 흡음 내장재 개발에 관한 연구 vol.27, pp.3, 2014, https://doi.org/10.6111/jkcgct.2017.27.3.135