DOI QR코드

DOI QR Code

THE HYERS-ULAM STABILITY OF CUBIC FUNCTRIONAL EQUATIONS IN FUZZY BANACH SPACES

  • Yun, Yong Sik (Department of Mathematics and Research Institute for Basic Sciences Jeju National University) ;
  • Kim, Chang Il (Department of Mathematics Education, Dankook University)
  • Received : 2014.03.06
  • Accepted : 2014.03.24
  • Published : 2014.05.31

Abstract

In this paper, we consider the following cubic functional equation f(3x + y) + f(3x - y) = f(x + 2y) + 2f(x - y) + 2f(3x) - 3f(x) - 6f(y) and prove the generalized Hyers-Ulam stability for it in fuzzy normed spaces.

Keywords

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan (1950), no. 2, 64-66.
  2. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. (2003), no. 11, 687-705
  3. S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. (1994), no. 86, 429-436.
  4. P. Gavruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. (1994), no. 184, 431-436.
  5. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. (1941), no. 27, 222-224.
  6. A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst (1984), no. 12, 143-154.
  7. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (1975), no. 11, 326-334.
  8. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Infor. Sci. (2008), no. 178, 3791-3798.
  9. K. H. Park and Y. S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. (2004), no. 41, 347-357. https://doi.org/10.4134/BKMS.2004.41.2.347
  10. J. M. Rassias, Stability of the Ulam stability problem for cubic mappings, Glasnik Matematicki (2001), no. 36, 63-72.
  11. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. (1978), no. 72, 297-300.
  12. K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler- Lagrange type functional equation, Int. J. Math. Stat. (2008), no. 3, 36-46.
  13. S. M. Ulam, A collection of mathematical problems, Interscience Publisher, New York, 1964.
  14. M. E. Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis: Theory, Methods & Applications (2009), no. 11, 5629-5643.