DOI QR코드

DOI QR Code

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang (Department of Mathematics, Dongguk University) ;
  • Agarwal, Praveen (Department of Mathematics, Anand International College of Engineering)
  • Received : 2014.01.23
  • Accepted : 2014.03.24
  • Published : 2014.05.31

Abstract

A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

Keywords

References

  1. G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, 2011.
  2. D. Baleanu, S. D. Purohit and P. Agarwal, On fractional integral inequalities involving hypergeometric operators, Chinese J. Math. Vol. 2014 (2014), Article ID 609476, 5 pages http://dx.doi.org/10.1155/2014/609476
  3. S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10(3)(2009), Art. 86, 5 pp (electronic).
  4. P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les m^emes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.
  5. J. Choi and P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstr. Appl. Anal. 2014, Vol. 2014(2014), Article ID 579260, 11 pages.
  6. L. Curiel and L. Galue, A generalization of the integral operators involving the Gauss' hypergeometric function, Rev. Tec. Ing. Unlv. Zulla. 19(1) (1996), 17-22.
  7. Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (2010), 493-497.
  8. Z. Dahmani, O. Mechouar and S. Brahami, Certain inequalities related to the Chebyshev's functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl. 3(4) (2011), 38-44.
  9. S. S. Dragomir, Some integral inequalities of Gruss type, Indian J. Pure Appl. Math. 31(4) (2000), 397-415.
  10. S. L. Kalla and A. Rao, On Gruss type inequality for hypergeometric fractional integrals, Matematiche (Catania) 66(1) (2011), 57-64.
  11. J. C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, 2004 (Chinese).
  12. V. Lakshmikantham and A. S. Vatsala, Theory of fractional di erential inequalities and applications, Commun. Appl. Anal. 11 (2007), 395-402.
  13. A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, Dordrecht, Heidelberg and London, 2010.
  14. D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
  15. H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl. 2011, Article ID 787939, 7 pp.
  16. A. M. Ostrowski, On an integral inequality, Aequations Math. 4 (1970), 358-373. https://doi.org/10.1007/BF01844168
  17. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  18. W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal. 2(2) (2011), 23-28.

Cited by

  1. -Integral Operators vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/174126
  2. Existence Results for a System of Coupled Hybrid Fractional Differential Equations vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/426438
  3. Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals vol.2014, pp.1687-0409, 2014, https://doi.org/10.1155/2014/851271
  4. Lyapunov-type inequalities for a class of fractional differential equations vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0769-2
  5. q-Integral inequalities associated with some fractional q-integral operators vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0860-8
  6. A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR vol.30, pp.2, 2015, https://doi.org/10.4134/CKMS.2015.30.2.081
  7. Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-499
  8. Generalized fractional inequalities for quasi-convex functions vol.2019, pp.1, 2019, https://doi.org/10.1186/s13662-019-1951-5
  9. CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES vol.36, pp.2, 2014, https://doi.org/10.5831/hmj.2014.36.2.455
  10. On Generalized Fractional Integration of Aleph $$(\aleph )$$ ( ℵ ) -Function vol.3, pp.suppl1, 2014, https://doi.org/10.1007/s40819-017-0353-1
  11. One dimensional fractional frequency Fourier transform by inverse difference operator vol.2019, pp.1, 2014, https://doi.org/10.1186/s13662-019-2071-y
  12. Some new Chebyshev type inequalities utilizing generalized fractional integral operators vol.5, pp.2, 2014, https://doi.org/10.3934/math.2020079
  13. A New Generalization of Pochhammer Symbol and Its Applications vol.5, pp.1, 2020, https://doi.org/10.2478/amns.2020.1.00023
  14. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel vol.6, pp.10, 2021, https://doi.org/10.3934/math.2021648
  15. An Extension of Beta Function by Using Wiman’s Function vol.10, pp.3, 2014, https://doi.org/10.3390/axioms10030187
  16. Sharp bounds for a ratio of the q-gamma function in terms of the q-digamma function vol.2021, pp.1, 2014, https://doi.org/10.1186/s13660-021-02642-7