References
- G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, 2011.
- D. Baleanu, S. D. Purohit and P. Agarwal, On fractional integral inequalities involving hypergeometric operators, Chinese J. Math. Vol. 2014 (2014), Article ID 609476, 5 pages http://dx.doi.org/10.1155/2014/609476
- S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10(3)(2009), Art. 86, 5 pp (electronic).
- P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les m^emes limites, Proc. Math. Soc. Charkov 2 (1882), 93-98.
- J. Choi and P. Agarwal, Some new Saigo type fractional integral inequalities and their q-analogues, Abstr. Appl. Anal. 2014, Vol. 2014(2014), Article ID 579260, 11 pages.
- L. Curiel and L. Galue, A generalization of the integral operators involving the Gauss' hypergeometric function, Rev. Tec. Ing. Unlv. Zulla. 19(1) (1996), 17-22.
- Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (2010), 493-497.
- Z. Dahmani, O. Mechouar and S. Brahami, Certain inequalities related to the Chebyshev's functional involving a type Riemann-Liouville operator, Bull. Math. Anal. Appl. 3(4) (2011), 38-44.
- S. S. Dragomir, Some integral inequalities of Gruss type, Indian J. Pure Appl. Math. 31(4) (2000), 397-415.
- S. L. Kalla and A. Rao, On Gruss type inequality for hypergeometric fractional integrals, Matematiche (Catania) 66(1) (2011), 57-64.
- J. C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, 2004 (Chinese).
- V. Lakshmikantham and A. S. Vatsala, Theory of fractional dierential inequalities and applications, Commun. Appl. Anal. 11 (2007), 395-402.
- A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, Dordrecht, Heidelberg and London, 2010.
- D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
- H. Ogunmez and U.M. Ozkan, Fractional quantum integral inequalities, J. Inequal. Appl. 2011, Article ID 787939, 7 pp.
- A. M. Ostrowski, On an integral inequality, Aequations Math. 4 (1970), 358-373. https://doi.org/10.1007/BF01844168
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- W. T. Sulaiman, Some new fractional integral inequalities, J. Math. Anal. 2(2) (2011), 23-28.
Cited by
- -Integral Operators vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/174126
- Existence Results for a System of Coupled Hybrid Fractional Differential Equations vol.2014, pp.1537-744X, 2014, https://doi.org/10.1155/2014/426438
- Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals vol.2014, pp.1687-0409, 2014, https://doi.org/10.1155/2014/851271
- Lyapunov-type inequalities for a class of fractional differential equations vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0769-2
- q-Integral inequalities associated with some fractional q-integral operators vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0860-8
- A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR vol.30, pp.2, 2015, https://doi.org/10.4134/CKMS.2015.30.2.081
- Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-499
- Generalized fractional inequalities for quasi-convex functions vol.2019, pp.1, 2019, https://doi.org/10.1186/s13662-019-1951-5
- CERTAIN NEW PATHWAY TYPE FRACTIONAL INTEGRAL INEQUALITIES vol.36, pp.2, 2014, https://doi.org/10.5831/hmj.2014.36.2.455
- On Generalized Fractional Integration of Aleph $$(\aleph )$$ ( ℵ ) -Function vol.3, pp.suppl1, 2014, https://doi.org/10.1007/s40819-017-0353-1
- One dimensional fractional frequency Fourier transform by inverse difference operator vol.2019, pp.1, 2014, https://doi.org/10.1186/s13662-019-2071-y
- Some new Chebyshev type inequalities utilizing generalized fractional integral operators vol.5, pp.2, 2014, https://doi.org/10.3934/math.2020079
- A New Generalization of Pochhammer Symbol and Its Applications vol.5, pp.1, 2020, https://doi.org/10.2478/amns.2020.1.00023
- New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel vol.6, pp.10, 2021, https://doi.org/10.3934/math.2021648
- An Extension of Beta Function by Using Wiman’s Function vol.10, pp.3, 2014, https://doi.org/10.3390/axioms10030187
- Sharp bounds for a ratio of the q-gamma function in terms of the q-digamma function vol.2021, pp.1, 2014, https://doi.org/10.1186/s13660-021-02642-7