DOI QR코드

DOI QR Code

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Sun, Rui (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Qiao, Xiangjin (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Xu, Cuicui (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Shang, Xiaoya (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Niu, Weining (The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Chao, Yu (Affiliated Hospital of Xi'an Medical University)
  • Received : 2014.02.11
  • Accepted : 2014.05.19
  • Published : 2014.08.30

Abstract

The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.

Keywords

References

  1. Zhou B, Yang DZ, Zhou QQ. The SEM observation of small intestinal mucosa in the rabbits under simulated high altitude hypoxia. Chin J Gastroenterol Hepatol. 2009;18:751-753.
  2. Recavarren-Arce S, Ramirez-Ramos A, Gilman RH, ChingaAlayo E, Watanabe-Yamamoto J, Rodriguez-Ulloa C, Miyagui J, Passaro DJ, Eza D. Severe gastritis in the Peruvian Andes. Histopathology. 2005;46:374-379. https://doi.org/10.1111/j.1365-2559.2005.02102.x
  3. Shen L. Functional morphology of the gastrointestinal tract. Curr Top Microbiol Immunol. 2009;337:1-35.
  4. Zhou QQ, Yang DZ, Luo YJ, Li SZ, Liu FY, Wang GS. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroenterol. 2011;17:1584-1593. https://doi.org/10.3748/wjg.v17.i12.1584
  5. Wu WM, Zhang FX. Research advances in plateau hypoxia and gut barrier injury. World Chinese J Digestol. 2009;17:1432-1436. https://doi.org/10.11569/wcjd.v17.i14.1432
  6. Tang XL, Xu MJ, Li ZH, Pan Q, Fu JH. Effects of vitamin E on expressions of eight microRNAs in the liver of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2013;34: 1470-1475. https://doi.org/10.1016/j.fsi.2013.03.353
  7. Ernst IM, Pallauf K, Bendall JK, Paulsen L, Nikolai S, Huebbe P, Roeder T, Rimbach G. Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev. 2013;12:365-375. https://doi.org/10.1016/j.arr.2012.10.002
  8. Finno CJ, Valberg SJ. A comparative review of vitamin E and associated equine disorders. J Vet Intern Med. 2012;26:1251-1266. https://doi.org/10.1111/j.1939-1676.2012.00994.x
  9. Vavricka SR, Rogler G. Intestinal absorption and vitamin levels: is a new focus needed? Dig Dis. 2012;30 Suppl 3:73-80. https://doi.org/10.1159/000342609
  10. Bailey DM, Davies B. Acute mountain sickness; prophylactic benefits of antioxidant vitamin supplementation at high altitude. High Alt Med Biol. 2001;2:21-29. https://doi.org/10.1089/152702901750067882
  11. Ilavazhagan G, Bansal A, Prasad D, Thomas P, Sharma SK, Kain AK, Kumar D, Selvamurthy W. Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats. Aviat Space Environ Med. 2001;72:899-903.
  12. Lee JD, Choi HC, Kang YJ, Kim MS, Lee KY. Effects of Antioxidants on the gamma-radiation damage of the cultured vascular smooth mucle cells of rat aorta. Korean J Physiol Pharmacol. 2007;11:189-195.
  13. Luo H, Guo P, Zhou Q. Role of TLR4/NF-${\kappa}$B in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS One. 2012;7:e46291. https://doi.org/10.1371/journal.pone.0046291
  14. Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol. 2013;34:155-161. https://doi.org/10.1016/j.it.2012.09.006
  15. Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2013;167:374-379. https://doi.org/10.1001/jamapediatrics.2013.497
  16. Rist VT, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal. 2013;7:1067-1078. https://doi.org/10.1017/S1751731113000062
  17. Roche M, Kemp FW, Agrawal A, Attanasio A, Neti PV, Howell RW, Ferraris RP. Marked changes in endogenous antioxidant expression precede vitamin A-, C-, and E-protectable, radiationinduced reductions in small intestinal nutrient transport. Free Radic Biol Med. 2011;50:55-65. https://doi.org/10.1016/j.freeradbiomed.2010.10.689
  18. Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutat Res. 2009;674:36-44. https://doi.org/10.1016/j.mrgentox.2008.09.017
  19. Seth V, Banerjee BD, Chakravorty AK. Lipid peroxidation, free radical scavenging enzymes, and glutathione redox system in blood of rats exposed to propoxur. Pesticide Biochemistry and Physiology. 2001;71:133-139. https://doi.org/10.1006/pest.2001.2571
  20. Uzun FG, Demir F, Kalender S, Bas H, Kalender Y. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol. 2010;48:1714-1720. https://doi.org/10.1016/j.fct.2010.03.051
  21. Najeed Q, Bhaskar N, Masood I, Wadhwa S, Kaur H, Ishaq S. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels-distinguishing parameters between benign and malignant pleural effusions. Free Radicals and Antioxidants. 2012; 2:8-11. https://doi.org/10.5530/ax.2012.2.2.2
  22. Singh M, Thomas P, Shukla D, Tulsawani R, Saxena S, Bansal A. Effect of subchronic hypobaric hypoxia on oxidative stress in rat heart. Appl Biochem Biotechnol. 2013;169:2405-2419. https://doi.org/10.1007/s12010-013-0141-2
  23. El-Demerdash FM, Jebur AB, Nasr HM. Oxidative stress and biochemical perturbations induced by insecticides mixture in rat testes. J Environ Sci Health B. 2013;48:593-599.
  24. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427-434. https://doi.org/10.1038/nature06005
  25. Choi WJ, Kim SK, Park HK, Sohn UD, Kim W. AntiInflammatory and Anti-Superbacterial Properties of Sulforaphane from Shepherd's Purse. Korean J Physiol Pharmacol. 2014;18:33-39. https://doi.org/10.4196/kjpp.2014.18.1.33
  26. Wu QJ, Zhou YM, Wu YN, Zhang LL, Wang T. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet Immunol Immunopathol. 2013;153:70-76. https://doi.org/10.1016/j.vetimm.2013.02.006
  27. Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23:598-604. https://doi.org/10.1016/j.coi.2011.08.003
  28. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferongamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163-189. https://doi.org/10.1189/jlb.0603252
  29. Hansen CH, Frokiaer H, Christensen AG, Bergstrom A, Licht TR, Hansen AK, Metzdorff SB. Dietary xylooligosaccharide downregulates IFN-${\gamma}$ and the low-grade inflammatory cytokine IL-1${\beta}$ systemically in mice. J Nutr. 2013;143:533-540. https://doi.org/10.3945/jn.112.172361
  30. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359-1374. https://doi.org/10.1053/j.gastro.2007.02.056
  31. Muir WI, Husband AJ, Bryden WL. Dietary supplementation with vitamin E modulates avian intestinal immunity. Br J Nutr. 2002;87:579-585. https://doi.org/10.1079/BJN2002562
  32. Elmore BO, Bollinger JA, Dooley DM. Human kidney diamine oxidase: heterologous expression, purification, and characterization. J Biol Inorg Chem. 2002;7:565-579. https://doi.org/10.1007/s00775-001-0331-1
  33. Hamada Y, Shinohara Y, Yano M, Yamamoto M, Yoshio M, Satake K, Toda A, Hirai M, Usami M. Effect of the menstrual cycle on serum diamine oxidase levels in healthy women. Clin Biochem. 2013;46:99-102. https://doi.org/10.1016/j.clinbiochem.2012.10.013
  34. Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009;70:505-515. https://doi.org/10.1111/j.1365-3083.2009.02319.x
  35. Shang X, Wang P, Liu Y, Zhang Z, Xue Y. Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci. 2011;43:364-369. https://doi.org/10.1007/s12031-010-9451-9
  36. Rao R. Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci. 2009;1165:62-68. https://doi.org/10.1111/j.1749-6632.2009.04054.x
  37. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol. 2005;288:C1231-1241. https://doi.org/10.1152/ajpcell.00581.2004
  38. Basu M, Malhotra AS, Pal K, Prasad R, Kumar R, Prasad BA, Sawhney RC. Erythropoietin levels in lowlanders and highaltitude natives at 3450 m. Aviat Space Environ Med. 2007;78: 963-967. https://doi.org/10.3357/ASEM.2085.2007
  39. Hopfl G, Ogunshola O, Gassmann M. Hypoxia and high altitude. The molecular response. Adv Exp Med Biol. 2003; 543:89-115. https://doi.org/10.1007/978-1-4419-8997-0_7
  40. Zamudio S, Wu Y, Ietta F, Rolfo A, Cross A, Wheeler T, Post M, Illsley NP, Caniggia I. Human placental hypoxia-inducible factor-1alpha expression correlates with clinical outcomes in chronic hypoxia in vivo. Am J Pathol. 2007;170:2171-2179. https://doi.org/10.2353/ajpath.2007.061185
  41. Fedele AO, Whitelaw ML, Peet DJ. Regulation of gene expression by the hypoxia-inducible factors. Mol Interv. 2002;2:229-243. https://doi.org/10.1124/mi.2.4.229
  42. Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med. 2011;50:645-666. https://doi.org/10.1016/j.freeradbiomed.2010.12.023
  43. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117:1926-1932. https://doi.org/10.1172/JCI31370
  44. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15: 551-578. https://doi.org/10.1146/annurev.cellbio.15.1.551
  45. Liu Y, Zhu L, Fatheree NY, Liu X, Pacheco SE, Tatevian N, Rhoads JM. Changes in intestinal Toll-like receptors and cytokines precede histological injury in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2009;297:G442-450. https://doi.org/10.1152/ajpgi.00182.2009
  46. Weber-Mzell D, Zaupa P, Petnehazy T, Kobayashi H, Schimpl G, Feierl G, Kotanko P, Hollwarth M. The role of nuclear factor-kappa B in bacterial translocation in cholestatic rats. Pediatr Surg Int. 2006;22:43-49. https://doi.org/10.1007/s00383-005-1599-y

Cited by

  1. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/6967396
  2. Establishment and evaluation of an experimental rat model for high-altitude intestinal barrier injury vol.13, pp.2, 2014, https://doi.org/10.3892/etm.2016.4012
  3. High-Altitude-Induced alterations in Gut-Immune Axis: A review vol.37, pp.2, 2014, https://doi.org/10.1080/08830185.2017.1407763
  4. Gastric Mucosal Lesions in Tibetans with High-Altitude Polycythemia Show Increased HIF-1A Expression and ROS Production vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6317015
  5. Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy vol.7, pp.4, 2014, https://doi.org/10.3390/microorganisms7040097
  6. Influence of functional food components on gut health vol.59, pp.12, 2014, https://doi.org/10.1080/10408398.2018.1433629
  7. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression vol.25, pp.1, 2014, https://doi.org/10.1186/s10020-019-0122-1
  8. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study vol.13, pp.1, 2021, https://doi.org/10.1080/19490976.2021.1875774
  9. The Landscape of Interactions between Hypoxia-Inducible Factors and Reactive Oxygen Species in the Gastrointestinal Tract vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/8893663
  10. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease vol.13, pp.2, 2014, https://doi.org/10.3390/nu13020699
  11. Vitamin E protects against gabapentin-induced chronic hepatic and renal damage associated with the inhibition of apoptosis and tissue injury in rats vol.267, pp.None, 2014, https://doi.org/10.1016/j.lfs.2020.118940
  12. Apparent Kinetics of Co‐Gasification of Biomass and Vacuum Gas Oil (VGO) vol.16, pp.5, 2014, https://doi.org/10.1002/asia.202001271