DOI QR코드

DOI QR Code

Fucoidan Promotes the Reconstruction of Skin Equivalents

  • Song, Yu Seok (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Li, Hailan (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Balcos, Marie Carmel (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Yun, Hye-Young (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Baek, Kwang Jin (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Kwon, Nyoun Soo (Department of Biochemistry, Chung-Ang University College of Medicine) ;
  • Choi, Hye-Ryung (Department of Dermatology, Seoul National University Bundang Hospital) ;
  • Park, Kyoung-Chan (Department of Dermatology, Seoul National University Bundang Hospital) ;
  • Kim, Dong-Seok (Department of Biochemistry, Chung-Ang University College of Medicine)
  • Received : 2014.03.27
  • Accepted : 2014.06.27
  • Published : 2014.08.30

Abstract

In this study we investigated the effects of fucoidan on the proliferation of fibroblasts and the reconstruction of a skin equivalent (SE). Fucoidan significantly stimulated the proliferation of CCD-25Sk human fibroblasts and Western blot analysis demonstrated that fucoidan markedly increased the expression of cyclin D1 and decreased the expression of p27. Fucoidan was used to reconstruct SE. Immunohistochemical staining showed that the addition of fucoidan to dermal equivalents increased expression of proliferating cell nuclear antigen (PCNA) and p63. In addition, expression of ${\alpha}6$-integrin was significantly increased by fucoidan, whereas expression of ${\beta}1$-integrin, type 1 collagen, elastin, fibronectin did not markedly change. These results suggest that fucoidan has positive effects on epidermal reconstruction and will therefore be beneficial in the reconstruction of SE.

Keywords

References

  1. Regnier M, Asselineau D, Lenoir MC. Human epidermis reconstructed on dermal substrates in vitro: an alternative to animals in skin pharmacology. Skin Pharmacol. 1990;3:70-85. https://doi.org/10.1159/000210854
  2. Augustin C, Damour O. Pharmacotoxicological applications of an equivalent dermis: three measurements of cytotoxicity. Cell Biol Toxicol. 1995;11:167-171. https://doi.org/10.1007/BF00756519
  3. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol. 2013;60:366-374. https://doi.org/10.1016/j.ijbiomac.2013.06.030
  4. Ko EJ, Joo HG. Fucoidan enhances the survival and sustains the number of splenic dendritic cells in mouse endotoxemia. Korean J Physiol Pharmacol. 2011;15:89-94. https://doi.org/10.4196/kjpp.2011.15.2.89
  5. Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res. 2010;125: 419-426. https://doi.org/10.1016/j.thromres.2010.02.011
  6. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol. 2011;49:331-336. https://doi.org/10.1016/j.ijbiomac.2011.05.009
  7. Lee SH, Ko CI, Jee Y, Jeong Y, Kim M, Kim JS, Jeon YJ. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr Polym. 2013;92:84-89. https://doi.org/10.1016/j.carbpol.2012.09.066
  8. Hayashi K, Lee JB, Nakano T, Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013;15:302-309. https://doi.org/10.1016/j.micinf.2012.12.004
  9. Wang J, Zhang Q, Zhang Z, Song H, Li P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol. 2010;46:6-12. https://doi.org/10.1016/j.ijbiomac.2009.10.015
  10. Moon HJ, Lee SH, Ku MJ, Yu BC, Jeon MJ, Jeong SH, Stonik VA, Zvyagintseva TN, Ermakova SP, Lee YH. Fucoidan inhibits UVB-induced MMP-1 promoter expression and down regulation of type I procollagen synthesis in human skin fibroblasts. Eur J Dermatol. 2009;19:129-134.
  11. O'Leary R, Rerek M, Wood EJ. Fucoidan modulates the effect of transforming growth factor (TGF)-beta1 on fibroblast proliferation and wound repopulation in in vitro models of dermal wound repair. Biol Pharm Bull. 2004;27:266-270. https://doi.org/10.1248/bpb.27.266
  12. Mezzano V, Cabrera D, Vial C, Brandan E. Constitutively activated dystrophic muscle fibroblasts show a paradoxical response to TGF-beta and CTGF/CCN2. J Cell Commun Signal. 2007;1:205-217. https://doi.org/10.1007/s12079-008-0018-2
  13. Cho YS, Lee KH, Park JW. Pyrithione-zinc Prevents UVBinduced Epidermal Hyperplasia by Inducing HIF-1alpha. Korean J Physiol Pharmacol. 2010;14:91-97. https://doi.org/10.4196/kjpp.2010.14.2.91
  14. Prietzsch H, Brock J, Kleine HD, Liebe S, Jaster R. Interferon-alpha inhibits cell cycle progression by Ba/F3 cells through the antagonisation of interleukin-3 effects on key regulators of G(1)/S transition. Cell Signal. 2002;14:751-759. https://doi.org/10.1016/S0898-6568(02)00023-2
  15. Blagosklonny MV, Pardee AB. The restriction point of the cell cycle. Cell Cycle. 2002;1:103-110.
  16. Tang PP, Hsieh SC, Wang FF. Modulation of caspase activation and p27(Kip1) degradation in the p53-induced apoptosis in IW32 erythroleukemia cells. Cell Signal. 2002;14:961-968. https://doi.org/10.1016/S0898-6568(02)00043-8
  17. Liu Y, Wu J, Ho PY, Chen LC, Chen CT, Liang YC, Cheng CK, Lee WS. Anti-angiogenic action of 5,5-diphenyl-2-thiohydantoin-N10 (DPTH-N10). Cancer Lett. 2008;271:294-305. https://doi.org/10.1016/j.canlet.2008.06.016
  18. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106:761-771. https://doi.org/10.1083/jcb.106.3.761
  19. Jeong YM, Lee JE, Kim SY, Yun HY, Baek KJ, Kwon NS, Kim DS. Enhanced effects of citrate on UVB-induced apoptosis of B16 melanoma cells. Pharmazie. 2009;64:829-833.
  20. Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979;76:1274-1278. https://doi.org/10.1073/pnas.76.3.1274
  21. Auger FA, Lopez Valle CA, Guignard R, Tremblay N, Noel B, Goulet F, Germain L. Skin equivalent produced with human collagen. In Vitro Cell Dev Biol Anim. 1995;31:432-439. https://doi.org/10.1007/BF02634255
  22. Nobre LT, Vidal AA, Almeida-Lima J, Oliveira RM, Paredes-Gamero EJ, Medeiros VP, Trindade ES, Franco CR, Nader HB, Rocha HA. Fucan effect on CHO cell proliferation and migration. Carbohydr Polym. 2013;98:224-232. https://doi.org/10.1016/j.carbpol.2013.05.040
  23. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone. 1998;22:17-23. https://doi.org/10.1016/S8756-3282(97)00220-2
  24. Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH, Youn JI, Eun HC. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. FASEB J. 2003;17:1913-1915. https://doi.org/10.1096/fj.02-0914fje
  25. Blanpain C, Fuchs E. p63: revving up epithelial stem-cell potential. Nat Cell Biol. 2007;9:731-733. https://doi.org/10.1038/ncb0707-731
  26. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006;20:3185-3197. https://doi.org/10.1101/gad.1463206
  27. Wha Kim S, Lee IW, Cho HJ, Cho KH, Han Kim K, Chung JH, Song PI, Chan Park K. Fibroblasts and ascorbate regulate epidermalization in reconstructed human epidermis. J Dermatol Sci. 2002;30:215-223. https://doi.org/10.1016/S0923-1811(02)00108-1
  28. Sonnenberg A, Calafat J, Janssen H, Daams H, van der Raaij-Helmer LM, Falcioni R, Kennel SJ, Aplin JD, Baker J, Loizidou M, et al. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol. 1991;113:907-917. https://doi.org/10.1083/jcb.113.4.907

Cited by

  1. Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen vol.17, pp.1, 2014, https://doi.org/10.3390/md17010054
  2. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering vol.11, pp.6, 2014, https://doi.org/10.3390/polym11061016
  3. Protective Effect of Low-Molecular-Weight Fucoidan on Radiation-Induced Fibrosis Through TGF-β1/Smad Pathway-Mediated Inhibition of Collagen I Accumulation vol.18, pp.3, 2020, https://doi.org/10.3390/md18030136
  4. Fucoidans: Downstream Processes and Recent Applications vol.18, pp.3, 2014, https://doi.org/10.3390/md18030170
  5. Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review vol.8, pp.7, 2014, https://doi.org/10.3390/jmse8070481
  6. Biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (review of literature) vol.179, pp.4, 2014, https://doi.org/10.24884/0042-4625-2020-179-4-109-115
  7. Incorporation of FGF-2 into Pharmaceutical Grade Fucoidan/Chitosan Polyelectrolyte Multilayers vol.18, pp.11, 2014, https://doi.org/10.3390/md18110531