참고문헌
- Bakhru SH, Altiok E, Highley C, et al (2012). Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking. Int J Nanomed, 7, 4613-23.
- Basuki JS, Duong HTT, Macmillan A, et al (2013). Polymergrafted, nonfouling, magnetic nanoparticles designed to selectively store and release molecules via ionic interactions. macromolecules, 46, 7043-54. https://doi.org/10.1021/ma401171d
- Barick KC, Singh S, Bahadur D, et al (2014). Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci, 418, 120-5. https://doi.org/10.1016/j.jcis.2013.11.076
- Bogart LK, Pourroy G, Murphy CJ, et al (2014). Nanoparticles for imaging, sensing, and therapeutic intervention. Acs Nano, 8, 3107-22. https://doi.org/10.1021/nn500962q
- Ding MM, Zeng X, He XL, et al (2014). Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromolecules, 15, 2896-906. https://doi.org/10.1021/bm500506v
- Fang C, Kievit FM, Veiseh O, et al (2012). Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release, 162, 233-41. https://doi.org/10.1016/j.jconrel.2012.06.028
- Gupta AK, Gupta M (2005). Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 26, 1565-73. https://doi.org/10.1016/j.biomaterials.2004.05.022
- Ge YQ, Zhang Y, Xia JG, et al (2009). Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloid Surface B Biointerfaces, 73, 294-301. https://doi.org/10.1016/j.colsurfb.2009.05.031
- Huang J, Wang LY, Lin R, et al (2013). Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces, 5, 4632-9. https://doi.org/10.1021/am400713j
- Huang G, Chen HB, Dong Y, et al (2013). Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 3, 116-26. https://doi.org/10.7150/thno.5411
- Huang XE, Tian GY, Cao J, et al (2013). Pemetrexed as a component of first-, second- and third- line chemotherapy in treating patients with metastatic lung adenocarcinoma. Asian Pac J Cancer Prev, 14, 6663-7. https://doi.org/10.7314/APJCP.2013.14.11.6663
- Larsen EK, Nielsen T, Wittenborn T, et al (2012). Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale, 4, 2352-61. https://doi.org/10.1039/c2nr11554a
- Lee N, Choi Y, Lee Y, et al (2012). Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r (2) relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett, 12, 3127-31. https://doi.org/10.1021/nl3010308
- Liang AL, Zhang TT, Zhou N, et al (2013). Fused polypeptide with DEF induces apoptosis of lung adenocarcinoma cells. Asian Pac J Cancer Prev, 14, 7339-44. https://doi.org/10.7314/APJCP.2013.14.12.7339
- Ma M, Zhang Y, Yu W, et al (2003). Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A Physicochem Eng Asp, 212, 219-26. https://doi.org/10.1016/S0927-7757(02)00305-9
- Rosen JE, Chan L, Shieh DB, et al (2012). Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine, 8, 275-90. https://doi.org/10.1016/j.nano.2011.08.017
- Riaz S, Bashir M, Naseem S (2014). Iron oxide nanoparticles prepared by modified co-precipitation method. Ieee T Magn, 50.
-
Sterenczak KA, Meier M, Glage S, et al (2012). Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (
$MnCl_2$ ) and superparamagnetic iron oxide nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer. BMC Cancer, 12, 284. https://doi.org/10.1186/1471-2407-12-284 - Singh A, Sahoo SK (2014). Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today, 19, 474-81. https://doi.org/10.1016/j.drudis.2013.10.005
- Sun SH (2014). Chemical synthesis of monodisperse magnetic nanoparticles for sensitive cancer detection. J Inorg Organomet, P 24, 33-8. https://doi.org/10.1007/s10904-013-9975-x
- Wang YL, Li B, Xu F, et al (2012). In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in-situmodified magnetite by amino groups of chitosan. J Biomater Sci Polym Ed, 23, 843-60. https://doi.org/10.1163/092050611X562166
- Weis C, Blank F, West A, et al (2014). Labeling of cancer cells with magnetic nanoparticles for magnetic resonance imaging. Magn Reson Med, 71, 1896-905. https://doi.org/10.1002/mrm.24832
- Wabler M, Zhu WL, Hedayati M, et al (2014). Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia, 30, 192-200. https://doi.org/10.3109/02656736.2014.913321
피인용 문헌
- Skin Cancer and Its Treatment: Novel Treatment Approaches with Emphasis on Nanotechnology vol.2017, pp.1687-4129, 2017, https://doi.org/10.1155/2017/2606271
- Microwave-mediated synthesis of iron-oxide nanoparticles for use in magnetic levitation cell cultures pp.2190-5517, 2019, https://doi.org/10.1007/s13204-019-00962-1