DOI QR코드

DOI QR Code

Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii

금나노 물질이 북방산개구리에 미치는 영향

  • Kim, Eun Ji (Department of Animal Resource, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Sahmyook University) ;
  • Han, Eul (Department of Animal Resource, Sahmyook University) ;
  • Kim, Ho Jin (Department of Convergence Science, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Sahmyook University) ;
  • Chung, Hoon (Department of Animal Resource, Sahmyook University)
  • 김은지 (삼육대학교 동물자원학과) ;
  • 고원배 (삼육대학교 융합과학과) ;
  • 한얼 (삼육대학교 동물자원학과) ;
  • 김호진 (삼육대학교 융합과학과) ;
  • 고정원 (삼육대학교 융합과학과) ;
  • 정훈 (삼육대학교 동물자원학과)
  • Received : 2015.10.14
  • Accepted : 2015.11.09
  • Published : 2015.11.30

Abstract

As the number of applications containing nanomaterials increase, aquatic ecosystem exposure to nanoparticles (NPs) is unavoidable. In this study, we carried out toxicity assessment to Au-nanoparticles(NPs) of Rana dybowskii eggs and tadpoles. Toxicity was recorded hatching rate, body condition(Snout-tail length, STL), and behavioral sensitivity. Behavioral sensitivity was analyzed to anti-predator behavior using Ethovision XT 9. Au-NPs did not show any toxicity of hatching rate and STL. But, Tadpoles exposed to Au-NPs decrease behavioral sensitivity of stimuli. This study has value of environmental toxicity evaluation because these results show the new way of toxicity assessment.

나노물질이 포함된 다양한 제품들이 증가하고 있으며, 나노물질의 수생태계 노출에 대해서는 불가피하다. 따라서 우리는 금나노입자를 이용하여 국내 다양한 습지 환경에 널리 서식하는 북방산개구리에 대한 독성평가(부화율, 바디컨디션, 행동학적민감도)를 해보았다. 행동학적 민감도는 포식자 회피반응 정도를 이용하여 Ethvision XT 9으로 측정하였다. 금나노입자에 대한 부화율과 STL의 독성은 나타나지 않았다. 하지만 금나노입자에 노출된 올챙이들은 외부자극에 대한 행동학적 민감도가 감소하였다. 이러한 결과는 실험대상 동물의 행동학적 특성을 이용한 새로운 독성평가 방식을 제시한다.

Keywords

References

  1. Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology, 5(1), pp, 43-54. https://doi.org/10.3109/17435390.2010.489207
  2. Bakri, SJ, Pulido, JS, Mukherjee, P, Marler, RJ and Mukhopadhyay, D (2008). Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 28, pp, 147-149. https://doi.org/10.1097/IAE.0b013e3180dc9360
  3. Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp 1897-1910. https://doi.org/10.1002/smll.200801716
  4. Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological sciences, 77(2), pp, 347-357. https://doi.org/10.1093/toxsci/kfh019
  5. Boxall, AB, Chaudhry, Q, Sinclair, C, Jones, A, Aitken, R, Jefferson, B and Watts, C (2007). Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK.
  6. Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale, 1(1), pp, 138-152. https://doi.org/10.1039/b9nr00053d
  7. Chivers, DP and Mirza, RS (2001). Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. of chemical ecology, 27(1), pp, 45-51. https://doi.org/10.1023/A:1005663815856
  8. Fabrega, J, Luoma, SN, Tyler, CR, Galloway, TS and Lead, JR. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment international, 37(2), pp, 517-531. https://doi.org/10.1016/j.envint.2010.10.012
  9. Farkas, J, Christian, P, Urrea, JAG, Roos, N, Hassellov, M, Tollefsen, KE and Thomas, KV (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), pp, 44-52. https://doi.org/10.1016/j.aquatox.2009.09.016
  10. Ferrari, MC, Messier, F and Chivers, DP (2007a). Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology, 17(4), pp, 263-266. https://doi.org/10.1007/s00049-007-0381-0
  11. Ferrari, MC, Messier, F and Chivers, DP (2007b). First documentation of cultural transmission of predator recognition by larval amphibians. Ethology, 113(6), pp, 621-627. https://doi.org/10.1111/j.1439-0310.2007.01362.x
  12. Ferrari, MC, Messier, F and Chivers, DP (2008). Larval amphibians learn to match antipredator response intensity to temporal patterns of risk. Behavioral Ecology, 19(5), pp, 980-983. https://doi.org/10.1093/beheco/arn056
  13. Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicology, 6(2), pp, 144-160. https://doi.org/10.3109/17435390.2011.562328
  14. George, S, Xia, T, Rallo, R, Zhao, Y, Ji, Z, Lin, S, Wang, X, Zhang, H, France, B, Schoenfeld, D, Damoiseaux, R, Liu, R, Lin, S, Bradley, K, Cohen, Y and Nel, AE (2011). Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS nano, 5(3), pp, 1805-1817. https://doi.org/10.1021/nn102734s
  15. Harper, S, Usenko, C, Hutchison, JE, Maddux, BLS and Tanguay, RL (2008). In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J. of Experimental Nanoscience, 3(3), pp, 195-206. https://doi.org/10.1080/17458080802378953
  16. Harper, SL, Carriere, JL, Miller, JM, Hutchison, JE, Maddux, BL and Tanguay, RL (2011). Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS nano, 5(6), pp, 4688-4697. https://doi.org/10.1021/nn200546k
  17. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), pp, 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
  18. Hu, CW, Li, M, Cui, YB, Li, DS, Chen J and Yang, LY (2010). Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), pp, 586-591. https://doi.org/10.1016/j.soilbio.2009.12.007
  19. Huang, X, Neretina S and El-Sayed, MA. (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), pp, 1-31.
  20. Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in vitro, 19(7), pp, 975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  21. Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. International J. of pharmaceutics, 105(2), pp, 157-168. https://doi.org/10.1016/0378-5173(94)90461-8
  22. Kim, EJ, Park, YS, Kim, DB, Jeon, MA and Chung, H (2011). The study of Predator to Korean Salamander. J. of Natural Science, 15(1), pp, 23-26. [Korean Literature]
  23. Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Castranava, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells. J. of Toxicology and Environmental Health, Part A, 70(24), pp, 2071-2079. https://doi.org/10.1080/15287390701601251
  24. Lee, BT and Ranville, JF (2012). The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J. of hazardous materials, 213-214, pp, 434-439. https://doi.org/10.1016/j.jhazmat.2012.02.025
  25. Lee, WM and An, YM (2010). Review Paper: Research Trends of Ecotoxicity of Nanoparticles in Water Environment. J. of Korean Society on Water Environment, 28(3), pp, 313-319. [Korean Literature]
  26. Li, T, Albee, B, Alemayehu, M, Diaz, R, Ingham, L, Kamal, S, Rodriguez. M and Bishnoi, SW (2010). Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Analytical and bioanalytical chemistry, 398(2), pp, 689-700. https://doi.org/10.1007/s00216-010-3915-1
  27. Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science & Technology, 40(14), pp, 4346-4352. https://doi.org/10.1021/es060589n
  28. Lovern, SB, Owen, HA, and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp, 43-48. https://doi.org/10.1080/17435390801935960
  29. Mathis, A, Ferrari, MC, Windel, N, Messier, F and Chivers, DP (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London B: Biological Sciences, 275(1651), pp, 2603-2607. https://doi.org/10.1098/rspb.2008.0754
  30. Meyer, JN, Lord, CA, Yang, XY, Turner, EA, Badireddy, AR, Marinakos, SM, Chilkoti, A, Wiesner, MR and Auffan, M (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic toxicology, 100(2), pp, 140-150. https://doi.org/10.1016/j.aquatox.2010.07.016
  31. Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives, 112(10), pp, 1058-1062 https://doi.org/10.1289/ehp.7021
  32. OECD (2010).Series on the Safety of Manufactured Nanomaterials No. 27:List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision.
  33. Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology, 6(2), pp, 109-120. https://doi.org/10.3109/17435390.2011.562325
  34. Perreault, F, Melegari, SP, Fuzinatto, CF, Bogdan, N, Morin, M, Popovic, R and Matias, WG (2014). Toxicity of pamamcoated gold nanoparticles in different unicellular models. Environmental toxicology, 29(3), pp, 328-336. https://doi.org/10.1002/tox.21761
  35. Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold bulletin, 41(2), pp 116-126. https://doi.org/10.1007/BF03216589
  36. Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicological Sciences, 119(1), pp, 135-145. https://doi.org/10.1093/toxsci/kfq311
  37. Scholars, W.W.I.C.F. PEW (2011). Project on Emerging Nanotechenologies, Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DC.
  38. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp, 167-174. https://doi.org/10.1016/j.cbpc.2009.10.002
  39. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2), pp, 178-186. https://doi.org/10.1016/j.aquatox.2010.03.001
  40. Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis. Marine environmental research, 66(1), pp, 131-133. https://doi.org/10.1016/j.marenvres.2008.02.044
  41. Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp, 269-274. https://doi.org/10.1016/j.cbpc.2011.09.006
  42. Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 6(7), pp, 691-699. https://doi.org/10.3109/17435390.2011.604440
  43. Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR. (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology, 7(1), pp, 37-47. https://doi.org/10.3109/17435390.2011.626566
  44. Yang, SY, Kim, JB, Min, MS, Suh, JH and Kang YJ(2001). Monograph of Korean Amphibia. Academi Publisher, Seoul, Korea.
  45. Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), pp, 2261-2265. https://doi.org/10.1002/smll.201000989