DOI QR코드

DOI QR Code

Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor

테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구

  • Lee, Hyeon Kwon (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Sang Gun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Jeon, Dong Hyup (Department of Mechanical System Engineering, Dongguk University)
  • 이현권 (서울대학교 기계항공공학부) ;
  • 이상건 (서울대학교 기계항공공학부) ;
  • 전동협 (동국대학교 기계부품시스템공학과)
  • Received : 2014.10.16
  • Accepted : 2014.11.25
  • Published : 2015.02.10

Abstract

Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of $LiNiMnCoO_2$ (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.

전산유체해석 기법을 이용하여, 테일러 반응기 내 유동특성과 입자의 체류시간에 대하여 연구하였다. 테일러 반응기는 반응기의 작동조건에 따라 내부 유동특성이 달라지므로, 입구주입속도와 반응기 회전속도 변화에 따른 테일러 반응기 내부의 유동특성 변화를 살펴보았다. 또한 테일러 와류(TVF)영역에서 리튬이온전지의 양극물질인 NMC입자의 반응기 내 체류시간을 측정하였다. 입구에서의 복잡한 화학반응은 고려하지 않았고 테일러 유동의 영향만 고찰하였다. 해석결과 반응기의 회전속도가 높고 반응물의 주입속도가 낮을수록 입자의 체류시간이 길어지는 것을 확인하였다.

Keywords

References

  1. M. Davis and E. Weber, Liquid-liquid extraction between rotating concentric cylinders, J. Ind. Eng. Chem., 52, 929-934 (1960). https://doi.org/10.1021/ie50611a027
  2. S. T. Wereley and R. M. Lueptow, Spatio-temporal character of non-wavy and wavy Taylor-Couette flow, J. Fluid Mech., 364, 59-80 (1998). https://doi.org/10.1017/S0022112098008969
  3. D. Coles, Transition in circular Couette flow, J. Fluid Mech., 21, 385-425 (1965). https://doi.org/10.1017/S0022112065000241
  4. E. L. Koschmieder, Benard cells and Taylor vortices, Cambridge University Press, 219-225 (1993).
  5. C. D. Andereck, S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech., 164, 155-183 (1986). https://doi.org/10.1017/S0022112086002513
  6. K. Buhler and N. Polifke, Dynamical behaviour of Taylor vortices with superimposed axial flow. Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, Springer, 21-29 (1990).
  7. R. M. Lueptow, A. Docter, and K. Min, Stability of axial flow in an annulus with a rotating inner cylinder, Phys. Fluids A., 4, 2446-2455 (1992). https://doi.org/10.1063/1.858485
  8. S. Chandrasekhar, The stability of spiral flow between rotating cylinders, Proc. R. Soc. Lond. A., 265, 188-197 (1962). https://doi.org/10.1098/rspa.1962.0003
  9. J. Wang, W. B. White, and J. H. Adair, Synthesis of Calcium Carbonate Particles in Octylamine/Water Bilayer Systems, J. KONA Powder and Particle, Doi:10.14356/kona.2014005.
  10. W. M. Jung, S. H. Kang, W. S. Kim, and C. K. Choi, Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chem. Eng. Sci., 55, 733-747 (2000). https://doi.org/10.1016/S0009-2509(99)00395-4
  11. W. S. Kim, Application of Taylor Vortex to Crystallization, J. Chem. Eng. Jpn., 47, 115-123 (2014). https://doi.org/10.1252/jcej.13we143
  12. A. Rochex, J. J. Godon, N. Bernet, and R. Escudie, Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities, Water Res., 42, 4915-4922 (2008). https://doi.org/10.1016/j.watres.2008.09.015
  13. M. C. Jung and S. G. Weber, Influence of Chemical Kinetics on Postcolumn Reaction in a Capillary Taylor Reactor with Catechol Analytes and Photoluminescence Following Electron Transfer, Anal. Chem., 77, 974-982 (2005). https://doi.org/10.1021/ac0486241
  14. M. Choi, G. Ham, B. S. Jin, S. M. Lee, Y. M. Lee, G. Wang, and H. S. Kim, Ultra-thin $Al_2O_3$ coating on the acid-treated $0.3Li_2MnO_3$.0.7 $LiMn_{0.60}Ni_{0.25}Co_{0.15}O_2$ electrode for Li-ion batteries, J. Alloy. Compd., 608, 110-117 (2014). https://doi.org/10.1016/j.jallcom.2014.04.068
  15. Z. Lu, D. MacNeil, and J. Dahn, Layered Li [$Ni_x$ $Co_{1-2x}$ $Mn_x$] $O_2$ Cathode Materials for Lithium-Ion Batteries, Electrochem. Solid St., 4, A200-A203 (2001). https://doi.org/10.1149/1.1413182
  16. Fluent Inc., FLUENT 14.5 user's guide (2012).
  17. M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood, X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes, Adv. Energy Mater., 3, 845-850 (2013). https://doi.org/10.1002/aenm.201200932
  18. N. D. Azizov and T. S. Akhundov, The bulk properties of the $Na_2SO_4-H_2O$ system in a wide range of the parameters of state, High Temp+., 38, 203-209 (2000). https://doi.org/10.1007/BF02755946

Cited by

  1. Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics vol.40, pp.1, 2016, https://doi.org/10.3795/KSME-B.2016.40.1.009