DOI QR코드

DOI QR Code

Isoindoline계 황색 화합물의 환경친화적 합성 및 이의 특성

Eco-friend Synthesis of Isoindoline Yellow Compound and its Properties

  • 투고 : 2014.10.16
  • 심사 : 2014.12.23
  • 발행 : 2015.02.10

초록

본 연구에서는 계면활성제를 사용하지 않는 친환경적 방법으로 붉은 계통의 노란 색상을 띄는 높은 내열성을 가진 isoindoline 화합물을 합성하기 위하여 다양한 반응 온도에서 여러 구조의 isoindoline 유도체를 첨가하여 합성한 후, 이를 고압 반응기에서 온도, 시간을 조절하여 결정화하였다. 시료들의 화학적 구조, 입자 형상 및 크기, 색상, 광학적 특성은 각각 FT-IR, FE-SEM 및 PSA, 색차계, UV-Vis 분광기, 제타 포텐샬을 이용하여 측정하여 비교 분석하였다. 유도체를 첨가한 후 결정화 처리하여 높은 내열성, 균일한 입도분포, 우수한 분산성의 isoindoline 화합물을 수득하였고 합성 조건에 따른 색상 변화 경향성을 확인할 수 있었다.

In this study, to obtain isoindoline compounds with the high thermal resistance and reddish yellow color using an environmental friendly method without the use of any surfactants, isoindoline derivatives with different structures were added at various reaction temperatures for the synthesis and the product was then crystallized by controlling temperatures and times in autoclave. Chemical structures, particle sizes, color differences, and optical properties were evaluated by the means of FT-IR, FE-SEM, UV-Vis spectroscopy, PSA (particle size analyzer) and Zeta potential analyzer. The samples with an enhanced dispersibility, highly thermal resistance, uniform particle sizes were achieved possibly due to the addition of isoindoline derivatives into the crystallization processing mixtures. The color change trend was also observed depending upon synthesis conditions.

키워드

참고문헌

  1. M. Marti, G. Fabregat, D. S. Azambuja, C. Aleman, and E. Armelin, Evaluation of an environmentally friendly anticorrosive pigment for alkyd primer, Prog. Org. Coat., 73, 321-329 (2012). https://doi.org/10.1016/j.porgcoat.2011.10.017
  2. R. Hainz, J. Allaz, and D. Schroeder, Isometric isoindoline yellow pigment, US Patent, 8,075,683 (2011).
  3. E. B. Faulkner and R. J. Schwartz, High Performance Pigments, 2nd ed., 221-241, Wiley-VCH, Weinheim, DE (2009).
  4. W. Herbst, K. Hunger, G. Wilker, H. Ohleier, and R. Winter, Industrial Organic Pigments: Production, Properties, Applications, 3nd ed., 31-419, Wiley-VCH, Weinheim, DE (2005).
  5. K. Baba, T. Mori, and K. Nakatsuka, Photosensitive coloring composition, and color filter and liquid crystal display panel using the same, US Patent, 6,653,031 (2003).
  6. B. Philippe, F. Michel, H. Fritz, and M. A. Mcalpine, isoindoline pigment having improved low shear dispersibility, US Patent, 6,143,067 (2000).
  7. M. T. Garcia, I. Ribosa, T. Guindulain, J. S. Laeal, and J. V. Rego, Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment, Environ. Pollut., 111, 169-175 (2001). https://doi.org/10.1016/S0269-7491(99)00322-X
  8. T. Cserhati, E. Forgacs, and G. Oros, Biological activity and environmental impact of anionic surfactants, Environ. Int., 28, 337-348 (2002). https://doi.org/10.1016/S0160-4120(02)00032-6
  9. S. Sangeetha, R. Basha, K. J. Sreeram, S. N. sangilimuthu, and B. U. Nir, Functional pigments from chromium(III) oxide nanoparticles, Dyes Pigments., 94, 548-552 (2012). https://doi.org/10.1016/j.dyepig.2012.03.019
  10. S. Novaconi and N. Vaszilcsin, Inductive heating hydrothermal synthesis of titanium dioxide nanostructures, Mater. Lett., 95, 59-62 (2013). https://doi.org/10.1016/j.matlet.2012.12.083
  11. Z. Iqbal, A. Lyubimtsev, M. Hanacka, and T. Zieglera, Anomerically glycosylated zinc(II) naphthalocyanines, Tetrahedron Lett., 50, 5681-5685 (2009). https://doi.org/10.1016/j.tetlet.2009.07.127
  12. I. Tamgho, J. T. Engle, and C. J. Ziegler, The syntheses and structures of bis(alkylimino)isoindolines, Tetrahedron Lett., 54, 6114-6117 (2013). https://doi.org/10.1016/j.tetlet.2013.08.134
  13. E. Makarewicz, P. Cysewski, A. Michalik, and D. Ziolkowska, Properties of acid or alkali treated cadmium pigments, Dyes Pigments, 96, 338-348 (2013). https://doi.org/10.1016/j.dyepig.2012.08.004
  14. ASTM Standard D 4187-82, Zeta potential of colloids in water and waste water, Am. Soc. for Testing & Mater. (1985).
  15. C. H. Hare, Paint film degradation: mechanisms and control, 71-77, The Society for Protective Coatings, Pittsburgh, USA (2001).
  16. W. Herbst and K. Hunger, Industrial Organic Pigments, 3rd ed., 12-261, Wiley-VCH, Weinheim. DE (2004).
  17. O. Mengual, G. Meunier, I. Cayre, K. Puech, and P. Snabre, TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis, Talanta, 50, 445-456 (1999). https://doi.org/10.1016/S0039-9140(99)00129-0
  18. G. Lincke, Molecular stacks as a common characteristic in the crystal lattice of organic pigment dyes A contribution to the "soluble-insoluble" dichotomy of dyes and pigments from the technological point of view, Dyes Pigments, 59, 1-24 (2003). https://doi.org/10.1016/S0143-7208(03)00097-4
  19. G. V. Atodiresei, I. G. Sandu, E. A. Tulbure, V. Vasilache, and R. Butunaru, Chromatic Characterization in Cielab System for Natural Dyed Materials, Prior Activation in Atmospheric Plasma Type DBD, Rev. Chim., 64, 165-169 (2013).
  20. J. Choi, C. Sakong, J. H. Choi, Chun Y, and J. P. Kim, Synthesis and characterization of some perylene dyes for dye-based LCD color filters, Dyes Pigments, 90, 82-88 (2011). https://doi.org/10.1016/j.dyepig.2010.11.006
  21. Y. G. Sidir, I. Sidir, H. Berber, and E. Tasal, UV-spectral changes for some azo compounds in the presence of different solvents, J. Mol. Liq., 162, 148-154 (2011). https://doi.org/10.1016/j.molliq.2011.07.002