DOI QR코드

DOI QR Code

The Removal of Nutrients and Heavy Metals Using Household Rain garden

가정용 빗물정원을 이용한 지붕빗물내 영양소 및 중금속 제거

  • Pak, Gijung (Department of Environmental Engineering, College of Science and Technology, Korea University) ;
  • Park, Heesoo (Department of Environmental Engineering, College of Science and Technology, Korea University) ;
  • Cho, Yunchul (Department of Environmental Engineering, Daejeon University) ;
  • Kim, Sungpyo (Department of Environmental Engineering, College of Science and Technology, Korea University)
  • 박기정 (고려대학교 환경시스템공학과) ;
  • 박희수 (고려대학교 환경시스템공학과) ;
  • 조윤철 (대전대학교 환경공학과) ;
  • 김성표 (고려대학교 환경시스템공학과)
  • Received : 2014.12.04
  • Accepted : 2014.12.30
  • Published : 2015.02.28

Abstract

In Korea, most rainfall events occur during summer which then leads to an increasing concern regarding high influx of non-point source pollutants since the pollutant loadings from these non-point sources are very significant. In particular, the first flush of roof-harvested rainfall is said to contain the most highest concentration of nutrients and heavy metals. Accordingly, it is important to develope the possible water quality management options in treating the contaminants and considering reclaimed water reuse. The rain garden could be one of suitable alternatives in addressing this issue. In this study, the development of an effective adsorption media and its application to a lab-scale rain garden was tested to evaluate the removal rate of various nutrient and organic matter (TN, TP, CODcr), and heavy metals (Cu, Cd, Pb). Results showed that carbonized peatmoss produced at higher temperature have better adsorption capacity as compared to the one produced at a lower temperature. When the carbonized peatmoss was applied as rain garden media, the highest removal of TN, TP, and CODcr was observed compared to no carbonized peatmoss applied rain garden. Therefore, this study showed that the carbonized peatmoss would be effectively applied to the rain garden for removing nutrients and heavy metals from roof-harvested rainwater.

대부분의 강우가 여름철에 집중되는 국내 강우 특성은 여름철 집중호우에 따른 비점 오염물질의 수계로의 과대 유입에 대한 우려를 높이고 있다. 국내 수계로의 오염원 유입특성이 대부분 비점오염원 형태인 것을 감안한다면 강우가 오염물질의 거동에 미치는 영향이 매우 크다고 할 수 있다. 특히 초기 우수의 경우 상당한 영양소와 중금속에 오염되어 있는 것으로 알려져 있기 때문에 이를 적절히 처리함과 동시에 재이용하기 위한 다양한 연구가 필요하다. 이를 해결하기 위한 다양한 시설 중 빗물정원은 빗물양과 수질의 조절이 가능한 친환경적이며 효과적인 방안이다. 본 연구에서는 빗물정원에 효과적으로 적용 가능한 자연형 흡착여재를 개발하고 이를 적용하여 빗물이 빗물정원을 통과한 이후 유출수의 영양소 및 유기물(TN, TP, CODcr), 중금속 제거(Cu, Cd, Pb) 효율을 검토하였다. 이를 위하여 자연형 흡착여재인 피트모스를 탄화시켜 오염물질 별 제거 흡착능을 살펴보았으며, 이를 이용한 삼단의 계단식 여재 시설을 구성하여 영양소 및 중금속 제거 변화 양상을 살펴보았다. 연구결과 피트모스는 더 높은 온도에서 탄화시켰을 경우 흡착능이 우수하였으며, 피흡착제의 농도가 낮을수록 흡착이 잘 되는 것으로 나타났다. 5개의 빗물정원에서의 인공강우 오염물질 제거효율을 분석한 결과, T-N, T-P, CODcr 모두 피트모스를 사용한 반응조가 제거율이 가장 높은 것으로 나타났다. 따라서 앞으로 빗물정원을 구성하는데 있어 피트모스를 탄화한 여재를 이용한다면 보다 효과적인 오염물질 저감효과를 얻을 수 있을 것이라 판단된다.

Keywords

References

  1. Amin, M. T. and Han, M. Y. (2009) Roof-harvested rainwater for portable purposes: application of solar collector disinfection, Water Research, Vol. 43, No. 20, pp. 5225-5235. https://doi.org/10.1016/j.watres.2009.08.041
  2. Cho, YC., Kim, SP., Park, HS., Komarneni, S, Hong, YS. (2014) Removal of inorganic pollutants in rainwater by a peat-derived porous material, J. of Porous Materials, 21(4), pp. 387-394. https://doi.org/10.1007/s10934-014-9784-9
  3. Choi, JY., Kim, SS., Lee, SY., Nam, GS., Cho, HJ., Kim, LH. (2013) Development Hybrid Filter System for Applicable on Various Rainfall, J. of Wetlands Research, 15(4), pp. 535-541. [Korean Literature] https://doi.org/10.17663/JWR.2013.15.4.535
  4. Chun, MH., Son, HJ., Kim, C., (2007) A Study on the Isolation of the Oil-degradation Microbes and Treatment Efficiency in the Oil Contaminated Soil with Peat Moss, Korean J. of Environmental Health Sciences, Vol. 33, No. 5, pp. 462-469. [Korean Literature] https://doi.org/10.5668/JEHS.2007.33.5.462
  5. Gromaire, M. C., Garnaud, S., Saad, M., Chebbo, G. (2001) Contribution of different sources to the pollution of wet weather flows in combined sewers, Water Research, Vol. 35, No. 2, pp. 521-533. https://doi.org/10.1016/S0043-1354(00)00261-X
  6. Jeong, CS. (2006) Statistical Data of Korea Water Resource Managements, Korean Society of Civil Engineers, Vol. 54, No. 7, pp.130-138. [Korean Literature]
  7. Reyes, J. M. M., Chuken U. J. L., Gonzalez A V, Olvera H. A. L. (2013) Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source, Bioresource Technology. Vol 144, pp. 128-134. https://doi.org/10.1016/j.biortech.2013.06.067
  8. Kim, CK. (2011) A Study on the Rainwater Quality Monitoring and the Improvement, Collection and Storage System, Clean Technology, Vol. 17, No. 4, pp. 353-362. [Korean Literature] https://doi.org/10.7464/KSCT.2011.17.4.353
  9. Kim, DC., Oh, JS., Kim, LH., Min KS., Kim, SP. (2012) The Fate of Pollutants in Effluent of Roof-Harvested Rainwater as a Function of Time, Korean Water Congress 2012, pp. 492-493. [Korean Literature]
  10. Kim, SP., Kim, DC., Oh, JS., Kim, LH., Min, KS. (2011) The Basic Study for the Roof-Harvested Rainwater Quality Characteristics as a Function of Rainfall Duration, Korean Wetlands Society, Vol. 14, No. 1, pp. 11-20. [Korean Literature]
  11. Lefevre, GH, Hozalski, RM, Novak PJ (2012) The role of biodegradation in limiting the accumulation of petroleum hydrocarbons in raingarden soils, Water Research, Vol. 46, No. 20, pp. 6753-6762. https://doi.org/10.1016/j.watres.2011.12.040
  12. Lee, KH., Kim, JS., Yu, HC., Choi, SW., Yoon, CJ., Woo, SH., Park, SC. (2001) Removal of Heavy Metal from Wastewater by Peat Moss, DEPRI 24(1), 2001, pp. 29-37. [Korean Literature]
  13. Lee, ME., Lee, SJ., Chung, JW., Lee, CY. (2013) Removal of Heavy Metals by Carbonized Peat Moss, Korean Geo-Environmental Society Conference, pp. 66-68. [Korean Literature]
  14. Lye, DJ. (2009) Rooftop runoff as a source of contamination: A review, Science of the Total Environment, Vol. 407, No. 21, pp. 5429-5434. https://doi.org/10.1016/j.scitotenv.2009.07.011
  15. Ministry of Environment (MEV). (2012). 2nd Nonpoint Source Management Program, Ministry of Environment. [Korean Literature]
  16. Ministry of land, Infrastructure and Transport & K-water (MOLIT). (2011). Water for the Future, Ministry of land, Infrastructure and Transport & K-water. [Korean Literature]
  17. Mun, JS., Jang, JY., Han, MY. (2006) The effects of catchment and retention time in a storage tank on rainwater quality in a rainwater utilization facility, Korean Water Congress 2006, pp.1093-1100. [Korean Literature]
  18. Muthanna, TM, Viklander, M, Thorolfsson, ST (2007) Seasonal climatic effects on the hydrology of a rain garden, Hydrological Processes, Vol. 21, No. 11,, pp. 1640-1649.
  19. Park, HS., Kim, SP. (2014) The Study for the Long-Term Rainwater Storage Quality Effect after Chlorination, Korean Wetlands Society, Vol. 16, No. 1, pp. 33-39. [Korean Literature] https://doi.org/10.17663/JWR.2014.16.1.033
  20. Simmons, G., Hope, V., Lewis, G., Whitmore, J., Gao, W. (2001) Contamination of potable roof-collection rainwater in Auckland, New Zealand, Water Research, Vol. 35, No. 6, pp. 1518-1524. https://doi.org/10.1016/S0043-1354(00)00420-6
  21. Talane Great Lakes Law (2010). http://www.greatlakeslaw.org/blog/2010/08/addressing-urban-and-agriculturalrunoff-pollution-in-the-great-lakes-water-quality-agreement.html
  22. Yang, H, Florence, DC, McCoy EL, Dick WA, Grewal PS (2009) Design and hydraulic characteristics of a field-scale bi-phasic bioretention rain garden system for storm water management, Water Science And Technology, Vol. 59, No. 9, pp. 1863-1872. https://doi.org/10.2166/wst.2009.186

Cited by

  1. Development of Domestic Rainwater Treatment System and its Application in the Field vol.18, pp.1, 2016, https://doi.org/10.17663/JWR.2016.18.1.024
  2. Exploring the Relationship between Prior Knowledge on Rain Gardens and Supports for Adopting Rain Gardens Using a Structural Equation Model vol.10, pp.5, 2018, https://doi.org/10.3390/su10051500