DOI QR코드

DOI QR Code

Improvement Characteristics of Bio-active Materials Coated Fabric on Rat Muscular Mitochondria

  • Lee, Donghee (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Kim, Young-Won (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Kim, Jung-Ha (Department of Family Medicine, College of Medicine, Chung-Ang University) ;
  • Yang, Misuk (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Bae, Hyemi (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Lim, Inja (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Bang, Hyoweon (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Go, Kyung-Chan (Research and Development Center, VENTEX Co. Ltd.) ;
  • Yang, Gwang-Wung (Research and Development Center, VENTEX Co. Ltd.) ;
  • Rho, Yong-Hwan (Research and Development Center, VENTEX Co. Ltd.) ;
  • Park, Hyo-Suk (Research and Development Center, VENTEX Co. Ltd.) ;
  • Park, Eun-Ho (Research and Development Center, VENTEX Co. Ltd.) ;
  • Ko, Jae-Hong (Department of Physiology, College of Medicine, Chung-Ang University)
  • Received : 2015.02.09
  • Accepted : 2015.02.23
  • Published : 2015.05.01

Abstract

This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-$1{\alpha}$ and ${\beta}$-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

Keywords

References

  1. Ibrahim NA, Eid BM, Khalil HM. Cellulosic/wool pigment prints with remarkable antibacterial functionalities. Carbohydr Polym. 2015;115:559-567. https://doi.org/10.1016/j.carbpol.2014.09.013
  2. Fluhr JW, Breternitz M, Kowatzki D, Bauer A, Bossert J, Elsner P, Hipler UC. Silver-loaded seaweed-based cellulosic fiber improves epidermal skin physiology in atopic dermatitis: safety assessment, mode of action and controlled, randomized single-blinded exploratory in vivo study. Exp Dermatol. 2010; 19:e9-15.
  3. Koller DY, Halmerbauer G, Bock A, Engstler G. Action of a silk fabric treated with AEGIS in children with atopic dermatitis: a 3-month trial. Pediatr Allergy Immunol. 2007;18:335-338. https://doi.org/10.1111/j.1399-3038.2006.00511.x
  4. Ricci G, Patrizi A, Bendandi B, Menna G, Varotti E, Masi M. Clinical effectiveness of a silk fabric in the treatment of atopic dermatitis. Br J Dermatol. 2004;150:127-131. https://doi.org/10.1111/j.1365-2133.2004.05705.x
  5. Lee MS, Song J, Kim HJ, Park KW, Moon SR. Effect of multi-functional fabric on sleep stages and growth hormone levels during sleep. Int J Neurosci. 2004;114:795-804. https://doi.org/10.1080/00207450490441046
  6. Lee MS, Kim HJ, Song J, Park KW, Moon SR. Effects of multifunctional fabrics on cardiac autonomic tone and psychological state. Int J Neurosci. 2004;114:923-931. https://doi.org/10.1080/00207450490461297
  7. Herbst A, Johnson CJ, Hynes K, McKenzie D, Aiken JM. Mitochondrial biogenesis drives a vicious cycle of metabolic insufficiency and mitochondrial DNA deletion mutation accumulation in aged rat skeletal muscle fibers. PLoS One. 2013;8:e59006. https://doi.org/10.1371/journal.pone.0059006
  8. Wagatsuma A, Kotake N, Yamada S. Muscle regeneration occurs to coincide with mitochondrial biogenesis. Mol Cell Biochem. 2011;349:139-147. https://doi.org/10.1007/s11010-010-0668-2
  9. Remels AH, Langen RC, Schrauwen P, Schaart G, Schols AM, Gosker HR. Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol. 2010;315:113-120. https://doi.org/10.1016/j.mce.2009.09.029
  10. Duguez S, Feasson L, Denis C, Freyssenet D. Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 2002;282:E802-809. https://doi.org/10.1152/ajpendo.00343.2001
  11. Rochard P, Rodier A, Casas F, Cassar-Malek I, Marchal-Victorion S, Daury L, Wrutniak C, Cabello G. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem. 2000;275:2733-2744. https://doi.org/10.1074/jbc.275.4.2733
  12. Barbieri E, Battistelli M, Casadei L, Vallorani L, Piccoli G, Guescini M, Gioacchini AM, Polidori E, Zeppa S, Ceccaroli P, Stocchi L, Stocchi V, Falcieri E. Morphofunctional and biochemical approaches for studying mitochondrial changes during myoblasts differentiation. J Aging Res. 2011;2011:845379.
  13. Seyer P, Grandemange S, Rochard P, Busson M, Pessemesse L, Casas F, Cabello G, Wrutniak-Cabello C. P43-dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of Calcineurin expression. Exp Cell Res. 2011;317:2059-2071. https://doi.org/10.1016/j.yexcr.2011.05.020
  14. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551-560. https://doi.org/10.1016/j.cub.2006.06.054
  15. McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease--its impact, etiology, and pathology. Curr Top Dev Biol. 2007;77:113-155. https://doi.org/10.1016/S0070-2153(06)77005-3
  16. Giorgi C, Wieckowski MR, Pandolfi PP, Pinton P. Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Commun Integr Biol. 2011;4:334-335. https://doi.org/10.4161/cib.4.3.15021
  17. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233-249. https://doi.org/10.1042/bj3410233
  18. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  19. Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010;12:842-846. https://doi.org/10.1038/ncb0910-842
  20. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. 2010;12:503-535. https://doi.org/10.1089/ars.2009.2598
  21. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006;209: 2265-2275. https://doi.org/10.1242/jeb.02182
  22. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177-203. https://doi.org/10.1146/annurev.physiol.010908.163119
  23. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462:245-253. https://doi.org/10.1016/j.abb.2007.03.034
  24. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2:287-295. https://doi.org/10.1038/nprot.2006.478
  25. Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion. 2009;9:261-265. https://doi.org/10.1016/j.mito.2009.03.003
  26. Korohoda W, Pietrzkowski Z, Reiss K. Chloramphenicol, an inhibitor of mitochondrial protein synthesis, inhibits myoblast fusion and myotube differentiation. Folia Histochem Cytobiol. 1993;31:9-13.
  27. Herzberg NH, Middelkoop E, Adorf M, Dekker HL, Van Galen MJ, Van den Berg M, Bolhuis PA, Van den Bogert C. Mitochondria in cultured human muscle cells depleted of mitochondrial DNA. Eur J Cell Biol. 1993;61:400-408.
  28. Hamai N, Nakamura M, Asano A. Inhibition of mitochondrial protein synthesis impaired C2C12 myoblast differentiation. Cell Struct Funct. 1997;22:421-431. https://doi.org/10.1247/csf.22.421
  29. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124:1-6. https://doi.org/10.1083/jcb.124.1.1
  30. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood. 2000;96:3932-3938.
  31. Zhang XD, Wang Y, Wu JC, Lin F, Han R, Han F, Fukunaga K, Qin ZH. Down-regulation of Bcl-2 enhances autophagy activation and cell death induced by mitochondrial dysfunction in rat striatum. J Neurosci Res. 2009;87:3600-3610. https://doi.org/10.1002/jnr.22152
  32. Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27:728-735. https://doi.org/10.1210/er.2006-0037
  33. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357-368. https://doi.org/10.1101/gad.1177604
  34. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-124. https://doi.org/10.1016/S0092-8674(00)80611-X
  35. Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125:795-799. https://doi.org/10.1242/jcs.093849
  36. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189: 211-221. https://doi.org/10.1083/jcb.200910140
  37. Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009;7:144-155. https://doi.org/10.1038/nrmicro2071
  38. Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci. 2008;9:344-356. https://doi.org/10.1038/nrn2373
  39. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998;1366:177-196. https://doi.org/10.1016/S0005-2728(98)00112-1

Cited by

  1. Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats vol.41, pp.3, 2015, https://doi.org/10.14407/jrpr.2016.41.3.206
  2. Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells vol.25, pp.2, 2021, https://doi.org/10.4196/kjpp.2021.25.2.167