The Effect of Incidental Semantic Activation on Hypothesis Generation: Exclusive vs Compatible Hypotheses

우연적 의미 활성화가 가설 생성에 미치는 영향: 가설 유형에 따른 차이

  • Lee, Younha (Interdisciplinary Program in Cognitive Science, Psychology, Seoul National University) ;
  • Park, Jooyong (Interdisciplinary Program in Cognitive Science, Psychology, Seoul National University)
  • 이윤하 (서울대학교 인지과학 협동과정, 심리학과) ;
  • 박주용 (서울대학교 인지과학 협동과정, 심리학과)
  • Received : 2015.02.23
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

Previous studies on the effect of incidental semantic priming on judgment, have focused mainly on mutually exclusive hypotheses. However, the present study explored whether incidental semantic activation affects diagnostic inference depending on the type of the hypothesis: mutually exclusive hypotheses vs compatible hypotheses. In Experiment 1, in case of mutually exclusive hypotheses, the final hypothesis was selected according to the incidental semantic priming, but there was no difference in the number of generated hypothesis in comparison with the control. However, for compatible hypotheses (i.e., both hypotheses can be true), the semantic priming affected the number of generated hypotheses, but not the selection of the final hypothesis. The same pattern of results was observed even when the cognitive load was increased. In Experiment 2, we found a boundary condition of incidental semantic activation on diagnostic inference. When cues related to each of the hypotheses were presented simultaneously, the incidental semantic effect disappeared. These results suggest that people consider all possible cues when making diagnostic inference in daily life. In light of these findings, further research on hypothesis generation/evaluation should take the type of hypothesis into account.

우연적 의미 활성화가 가설의 생성과 평가에 주는 영향에 대한 연구는 많다. 그러나 진단추론 상황에서 우연적 의미 활성화의 영향을 다루었던 연구는 거의 없으며, 특히 가설 유형에 따른 차이를 알아보는 연구를 찾아보기 힘들다. 본 연구는 진단 추론에서 우연적 의미 활성화가 가설의 유형에 따라 어떤 차이를 보이는 지를 알아보기 위해 수행되었다. 첫 번째 실험에서 우연적 의미 활성화는, 배타가설의 경우 최종 가설 생성 패턴에 영향을 미쳤지만, 가설의 생성 수에는 영향을 미치지 않음을 발견하였다. 반면 양립 가능한 가설의 경우, 활성화는 생성된 가설의 수에 영향을 미쳤지만, 최종 가설 생성 패턴에는 영향을 미치지 못했다. 이러한 결과는 인지적 노력을 가중시켰을 때조차 반복검증 되었다. 실험 2에서 우연적 의미 활성화와 더불어 추론에 필요한 단서의 개수를 조작하였다. 각 가설을 지지하는 단서들이 동시에 제시되면 우연적 의미 활성화의 영향은 사라졌고, 단서들의 개수가 증가함에 따라 배타가설의 추론 확신은 증가하였다. 본 연구는 진단 추론 시 관련된 단서를 최대한 활용할 필요성과, 가설생성/가설 평가에 관한 연구에서 가설 유형에 따른 차이를 고려해야 함을 시사한다.

Keywords

References

  1. Agnoli, F. (1991). Development of judgmental heuristics and logical reasoning: Training counteracts the representativeness heuristic. Cognitive Development, 6, 195-217 https://doi.org/10.1016/0885-2014(91)90036-D
  2. Alter, A. L. & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review.
  3. Bassok, M. & Novick, L. R. (2012). Problem solving. Oxford handbook of thinking and reasoning, 413-432.
  4. Dougherty, M. R. & Hunter, J. (2003). Probability judgment and subadditivity: The role of working memory capacity and constraining retrieval. Memory & Cognition, 31(6), 968-982. https://doi.org/10.3758/BF03196449
  5. Erb, H. P., Bioy, A., & Hilton, D. J. (2002). Choice preferences without inferences: Subconscious priming of risk attitudes. Journal of Behavioral Decision Making, 15(3), 251-262. https://doi.org/10.1002/bdm.416
  6. Fenton, N. & Neil, M. (2012). Risk assessment and decision analysis with Bayesian networks. CRC Press.
  7. Gilad, D. & Kliger, D. (2008). Priming the Risk Attitudes of Professionals in Financial Decision Making. Review of Finance, 12(3), 567-586. https://doi.org/10.1093/rof/rfm034
  8. Ho, J. L. & Keller, L. R. (1994). The effect of inference order and experience-related knowledge on diagnostic conjunction probabilities. Organizational Behavior and Human Decision Processes, 59(1), 51-74. https://doi.org/10.1006/obhd.1994.1050
  9. Josephson, J. R. & Josephson, S. G. (Eds.). (1996). Abductive inference: Computation, philosophy, technology. Cambridge University Press.
  10. Kahneman, D. & Miller, D. T. (1986). Norm theory: comparing reality to its alternatives. Psychological Review, 93, 136-153. https://doi.org/10.1037/0033-295X.93.2.136
  11. Kahneman, D. (2003). A perspective on judgment and choice: mapping bounded rationality. American psychologist, 58(9), 697. https://doi.org/10.1037/0003-066X.58.9.697
  12. Kelley, C. M. & Lindsay, D. S. (1993). Remembering mistaken for knowing: Ease of retrieval as a basis for confidence in answers to general knowledge questions. Journal of Memory and Language, 32(1), 1-24. https://doi.org/10.1006/jmla.1993.1001
  13. Kusev, P., van Schaik, P., & Aldrovandi, S. (2012). Preferences induced by accessibility: Evidence from priming. Journal of Neuroscience, Psychology, and Economics, 5(4), 250. https://doi.org/10.1037/a0030289
  14. Lange, N. D., Thomas, R. P., Buttaccio, D. R., Illingworth, D. A., & Davelaar, E. J., (2013). Working memory dynamics bias the generation of beliefs: The influence of data presentation rate on hypothesis generation. Psychonomic bulletin and review, 20:171-176. https://doi.org/10.3758/s13423-012-0316-9
  15. LeBoeuf, R. A. & Shafir, E. (2003). Deep thoughts and shallow frames: On the susceptibility to framing effects. Journal of Behavioral Decision Making, 16(2), 77-92. https://doi.org/10.1002/bdm.433
  16. Libby, R. & Frederick, D. M. (1990). Experience and the ability to explain audit findings. Journal of Accounting Research, 348-367.
  17. Libby, R. (1985). Availability and the generation of hypotheses in analytical review. Journal of Accounting Research, 648-667.
  18. Lombrozo, T. (2006). The structure and function of explanations. Trends in cognitive sciences, 10(10), 464-470. https://doi.org/10.1016/j.tics.2006.08.004
  19. Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive psychology, 55(3), 232-257. https://doi.org/10.1016/j.cogpsych.2006.09.006
  20. Lombrozo, T. (2012). Explanation and abductive inference. Oxford handbook of thinking and reasoning, 260-276.
  21. Malt, B. C., Ross, B. H., & Murphy, G. L. (1995). Predicting features for members of natural categories when categorization is uncertain. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 646. https://doi.org/10.1037/0278-7393.21.3.646
  22. McKenzie, C. R. (1998). Taking into account the strength of an alternative hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(3), 771. https://doi.org/10.1037/0278-7393.24.3.771
  23. Mehlhorn, K., Taatgen, N. A., Lebiere, C., & Krems, J. F. (2011). Memory activation and the availability of explanations in sequential diagnostic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(6), 1391. https://doi.org/10.1037/a0023920
  24. Pennington, N. & Hastie, R. (1988). Explanation-based decision making: Effects of memory structure on judgment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 521. https://doi.org/10.1037/0278-7393.14.3.521
  25. Reggia, J. A., Nau, D. S., & Wang, P. Y. (1985). A formal model of diagnostic inference. I. Problem formulation and decomposition. Information Sciences,37(1), 227-256. https://doi.org/10.1016/0020-0255(85)90015-5
  26. Reyes, R. M., Thompson, W. C., & Bower, G. H. (1980). Judgmental biases resulting from differing availabilities of arguments. Journal of Personality and Social Psychology, 39(1), 2. https://doi.org/10.1037/0022-3514.39.1.2
  27. Ross, L. D., Lepper, M. R., Strack, F., & Steinmetz, J. (1977). Social explanation and social expectation: Effects of real and hypothetical explanations on subjective likelihood. Journal of Personality and Social Psychology, 35(11), 817. https://doi.org/10.1037/0022-3514.35.11.817
  28. Schwarz, N. (2004). Metacognitive experiences in consumer judgment and decision making. Journal of Consumer Psychology, 14(4), 332-348. https://doi.org/10.1207/s15327663jcp1404_2
  29. Schwarz, N., Sanna, L. J., Skurnik, I., & Yoon, C. (2007). Metacognitive experiences and the intricacies of setting people straight: Implications for debiasing and public information campaigns. Advances in experimental social psychology, 39, 127. https://doi.org/10.1016/S0065-2601(06)39003-X
  30. Shafir, E. & LeBoeuf, R. A. (2002). Rationality. Annual Review of Psychology, 53, 419-517.
  31. Sloman, S. A. (1994). When explanations compete: The role of explanatory coherence on judgements of likelihood. Cognition, 52(1), 1-21. https://doi.org/10.1016/0010-0277(94)90002-7
  32. Smith, S. M. & Levin, I. P. (1996). Need for cognition and choice framing effects. Journal of Behavioral Decision Making, 9(4), 283-290. https://doi.org/10.1002/(SICI)1099-0771(199612)9:4<283::AID-BDM241>3.0.CO;2-7
  33. Snyder, M. & Swann, W. B. (1978). Hypothesis-testing processes in social interaction. Journal of Personality and Social Psychology, 36(11), 1202. https://doi.org/10.1037/0022-3514.36.11.1202
  34. Sprenger, A. & Dougherty, M. R. (2012). Generating and evaluating options for decision making: the impact of sequentially presented evidence. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 550. https://doi.org/10.1037/a0026036
  35. Strack, F., Schwarz, N., Bless, H., Kubler, A., & Wanke, M. (1993). Awareness of the influence as a determinant of assimilation versus contrast. European Journal of Social Psychology, 23(1), 53-62. https://doi.org/10.1002/ejsp.2420230105
  36. Thagard, P. (1997). Probabilistic Networks and Explanatory Coherence. Automated Abduction: Inference to the best explanation.
  37. Thomas, R. P., Dougherty, M. R., Sprenger, A. M., & Harbison, J. (2008). Diagnostic hypothesis generation and human judgment. Psychological Review,115(1), 155. https://doi.org/10.1037/0033-295X.115.1.155
  38. Tormala, Z. L., Petty, R. E., & Brinol, P. (2002). Ease of retrieval effects in persuasion: Aself-validation analysis. Personality and Social Psychology Bulletin, 28(12), 1700-1712. https://doi.org/10.1177/014616702237651
  39. Tsai, C. I., Klayman, J., & Hastie, R. (2008). Effects of amount of information on judgment accuracy and confidence. Organizational Behavior and Human Decision Processes, 107(2), 97-105. https://doi.org/10.1016/j.obhdp.2008.01.005
  40. Tseng, I., Moss, J., Cagan, J., & Kotovsky, K. (2008). The role of timing and analogical similarity in the stimulation of idea generation in design. Design Studies, 29(3), 203-221. https://doi.org/10.1016/j.destud.2008.01.003
  41. Tversky, A. & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive psychology, 5(2), 207-232. https://doi.org/10.1016/0010-0285(73)90033-9
  42. Van Wallendael, L. R. & Hastie, R. (1990). Tracing the footsteps of Sherlock Holmes: Cognitive representations of hypothesis testing. Memory & Cognition,18(3), 240-250. https://doi.org/10.3758/BF03213878
  43. Weber, E. U., Bockenholt, U., Hilton, D. J., & Wallace, B. (1993). Determinants of diagnostic hypothesis generation: effects of information, base rates, and experience. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(5), 1151. https://doi.org/10.1037/0278-7393.19.5.1151
  44. Zuckerman, M., Knee, C. R., Hodgins, H. S., & Miyake, K. (1995). Hypothesis confirmation: The joint effect of positive test strategy and acquiescence response set. Journal of Personality and Social Psychology, 68(1), 52. https://doi.org/10.1037/0022-3514.68.1.52