DOI QR코드

DOI QR Code

세 가지 재분석 자료에서의 겨울철 북반구 평균 자오면 순환-에디 상호작용

Mean Meridional Circulation-Eddy Interaction in Three Reanalysis Data Sets during the Boreal Winter

  • 문혜진 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 하경자 (부산대학교 지구환경시스템학부 대기과학전공)
  • Moon, Hyejin (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • 투고 : 2015.04.29
  • 심사 : 2015.09.08
  • 발행 : 2015.09.30

초록

The present study examines an interaction between the eddy and mean meridional circulation (MMC) comparing the results in three reanalysis data sets including ERA-Interim, NCEP2, and JRA-55 during the boreal winter in the Northern Hemisphere. It is noteworthy that the JRA-55 tends to produce stronger MMC compared to those of others, which is mainly due to the weak eddy flux. ERA-Interim represents the ensemble averages of MMC. The MMC-eddy interaction equation was adopted to investigate the scale interaction of the eddy momentum flux (EMF), eddy heat flux (EHF), and diabatic heating (DHT) with MMC. The EMF (EHF) shows a significant correlation coefficient with streamfunction under (above) 200 hPa-level. The perturbation (time mean) part of each eddy is dominant compared to another part in the EMF (EHF). The DHT is strongly interacted with streamfunction in the region between the equator and extra-tropical latitude over whole vertical column. Thus, the dominant term in each significant region modulates interannual variability of MMC. The inverse (proportional) relationship between MMC and pressure (meridional) derivative of the momentum (heat) divergence contributions is well represented in the three reanalysis data sets. The region modulated interannual variability of MMC by both EMF and DHT (EHF) is similar in ERA-Interim and JRA-55 (ERA-Interim and NCEP2). JRA-55 shows a lack of significant region of EHF due to the high resolution, compared to other data sets.

키워드

참고문헌

  1. Becker, E., G. Schmitz, and R. Geprags, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49, 182-199. https://doi.org/10.1034/j.1600-0870.1997.t01-1-00003.x
  2. Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705. https://doi.org/10.1029/2007GL030971
  3. Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett., 35, L18709, doi:10.1029/2008GL035084.
  4. Dee, D., and Coauthors, 2011: The ERA-interim reanalysis:configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  5. Ebita, A., and Coauthors, 2011: The Japanese 55-year reanalysis "JRA-55": An interim report. Sci. Online Lett. Atmos., 7, 149-152.
  6. Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvergica, 5, 19-60.
  7. Grotjahn, R., 1993: Global atmosphere circulations. Observations and theories, Oxford University Press, 249-264.
  8. Hare, S. H. E., and I. N. James, 2001: Baroclinic developments in jet entrances and exits. I: linear normal modes. Quart. J. Roy. Meteor. Soc., 127, 1293-1303. https://doi.org/10.1002/qj.49712757409
  9. James, I. N., 1995: Introduction to circulating atmosphere. Cambridge University Press, 117-125.
  10. Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 1677-1694. https://doi.org/10.1175/JAS3715.1
  11. Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: a theory for low-frequency modes. J. Atmos. Sci., 63, 1695-1708. https://doi.org/10.1175/JAS3716.1
  12. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  13. Kang, I.-S., J.-S. Kug, M.-J. Lim, and D.-H. Choi, 2011: Impact of transient eddies on extratropical seasonalmean predictability in DEMETER models. Clim. Dynam., 37, 509-519. https://doi.org/10.1007/s00382-010-0873-4
  14. Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 2859-2871. https://doi.org/10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2
  15. Kug, J.-S., and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, doi:10.1029/2008GL036435.
  16. Kug, J.-S., F.-F. Jin, J. Park, H.-L. Ren, and I.-S. Kang, 2010: A general rule for synoptic-eddy feedback onto lowfrequency flow. Clim. Dynam., 35, 1011-1026. https://doi.org/10.1007/s00382-009-0606-8
  17. Kuo, H.-L., 1956: Forced and free merdional circulations in the atmosphere. J. Meteor., 13, 561-568. https://doi.org/10.1175/1520-0469(1956)013<0561:FAFMCI>2.0.CO;2
  18. Kuroda, Y., and K. Kodera, 2004: Role of the Polar-night Jet Oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.
  19. Lee, S.-S., and K.-J. Ha, 2009: Eddy-mean flow interaction and its association with bonin high: Comparison of July and August. Asia-Pac. J. Atmos. Sci., 45, 483-498.
  20. Lee, S.-S., J.-Y. Lee, B. Wang, F.-F. Jin, W.-J. Lee, and K.-J. Ha, 2011: A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect. Clim. Dynam., 36, 1173-1188. https://doi.org/10.1007/s00382-010-0832-0
  21. Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim. Dynam., 39, 313-327. https://doi.org/10.1007/s00382-011-1188-9
  22. Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an Aquaplanet GCM to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769-783. https://doi.org/10.1175/2010JAS3553.1
  23. Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, DOI:10.1029/2006GL028443.
  24. Peixoto, J. P., and A. H. Oort, 1992: Physics of climate. American Institute of Physics, New York, N.Y., 520 pp.
  25. Pfeffer, L. R., 1981: Wave-mean flow interactions in the atmosphere, J. Atmos. Sci., 38, 1340-1359. https://doi.org/10.1175/1520-0469(1981)038<1340:WMFIIT>2.0.CO;2
  26. Seo, K.-H., D. M. W. Frierson, and J.-H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 40, doi:10.1002/2014GL060868.
  27. Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.
  28. Stone, P. H., and M.-S. Yao, 1987: Development of a twodimensional zonally averaged statistical-dynamical model. Part II: The role of eddy momentum fluxes in the general circulation and their parameterization. J. Atmos. Sci., 44, 3769-3786. https://doi.org/10.1175/1520-0469(1987)044<3769:DOATDZ>2.0.CO;2
  29. Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333-3350. https://doi.org/10.1175/JAS3821.1
  30. Williamson, D. L., and Coauthors, 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91A, 57-89. https://doi.org/10.2151/jmsj.2013-A03
  31. Young, E. C., 1972: Partial Differential Equations: An Introductions. Allyn and Bacon, Boston, 346 pp.

피인용 문헌

  1. Eddy Momentum, Heat, and Moisture Transports During the Boreal Winter: Three Reanalysis Data Comparison vol.26, pp.4, 2016, https://doi.org/10.14191/Atmos.2016.26.4.649