DOI QR코드

DOI QR Code

Design and fabrication of a 20 MHz high frequency linear array ultrasonic transducer for medical use

20 MHz 의료용 고주파 선형 배열 초음파 트랜스듀서의 설계 및 제작

  • 이원석 (알피니언메디칼시스템(주)) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2016.09.06
  • Accepted : 2016.11.25
  • Published : 2016.11.30

Abstract

In this work, a medical linear array ultrasonic transducer working in the range of 20 MHz has been developed for high-resolution ultrasonic imaging. After devising the structure of the transducer suitable for the transmission of high-frequency waves, we optimized the dimension of constituent components. Then, the process to fabricate the transducer was developed to realize the designed structure, and a prototype of the transducer was fabricated and characterized. The center frequency of the fabricated transducer was measured to be 19 MHz, and the fractional bandwidth to be 84.5 %, and the standard deviation of the sensitivity over the entire channels to be 0.74 dB. These measurement results showed good agreement with design data, which confirmed the validity of the high frequency ultrasonic transducer structure developed in this work. It was confirmed that the developed transducer with new structure had wider frequency bandwidth and uniform sensitivity than a conventional 20 MHz transducer.

본 연구에서는 고분해능 초음파 영상 획득이 가능한 20 MHz 대역의 의료용 초음파 선형 배열 트랜스듀서를 개발하였다. 먼저 고주파 음파의 전파가 용이한 트랜스듀서의 구조를 고안한 후, 구성소자의 최적치수를 도출하였다. 이후 설계에 따라 트랜스듀서의 제작공정을 개발하고, 트랜스듀서 시편의 제작 및 평가를 수행하였다. 제작된 초음파 트랜스듀서는 중심주파수가 19 MHz이고, 비대역폭이 84.5 %, 감도의 표준편차가 0.74 dB로 측정되었다. 측정 결과는 설계 결과와 잘 일치하였으며, 이에 의해 본 연구에서 개발한 고주파 초음파 트랜스듀서 구조의 타당성을 검증하였다. 개발된 트랜스듀서는 새로운 구조에 의해 기존의 20 MHz 트랜스듀서에 비해 더 넓은 주파수 대역폭과 균일한 감도를 가지는 것으로 확인되었다.

Keywords

References

  1. B. A. J. Angelsen, Ultrasound Imaging. Waves, Signals, and Signal Processing, Vol 1 (Emantec AS, Trondheim, 2000), pp. 1.3-1.51.
  2. H. H. Kim, J. M. Cannata, J. A. Williams, J. H. Chang, and K. Kirk Shung, "Fabrication of 20 MHz convex array transducers for high frequency ophthalmic imaging," in Proc. IEEE Int. Ultrason. Symp. 1130-1133 (2009).
  3. H. H. Kim, C. Hu, J. Park, B. J. Kang, J. A. Williams, J. M. Cannata, and K. Kirk Shung, "Characterization and evaluation of high frequency convex array transducers," in Proc. IEEE Int. Ultrason. Symp. 650-653 (2010).
  4. C. T. Chiu, J. A. Williams, B. J. Kang, T. Abraham, and K. Kirk Shung, "Fabrication and characterization of a 20 MHz microlinear phased array transducer for intervention guidance," in Proc. IEEE Int. Ultrason. Symp. 2121-2124 (2014).
  5. E. Brodal, F. Melandso, and S. Jacobsen, "Performance of an ultrasonic imaging system based on a 45-MHz linear PVDF transducer array: a numerical study," Adv. Acoust. Vib. 2011, 984596 (2011).
  6. M. Nakazawa, M. Tabaru, T. Takayasu, T. Aoyagi, and K. Nakamura, "100-MHz ultrasonic linear array transducers based on polyurea-film," Acoust. Sci. Technol. 36, 139-148 (2015). https://doi.org/10.1250/ast.36.139
  7. A. Iula, A. Savoia, and G. Caliano, "Capacitive microfabricated ultrasonic transducers for biometric applications," Microelectron. Eng. 88, 2278-2280 (2011). https://doi.org/10.1016/j.mee.2010.11.030
  8. Y. Lu and D. A. Horsley, "Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers," J. Microelectromech. Syst. 24, 1142-1149 (2015). https://doi.org/10.1109/JMEMS.2014.2387154
  9. R. Manwar and S. Chowdhury, "Experimental analysis of bisbenzocyclobutene bonded capacitive micromachined ultrasonic transducers," Sensors (Basel) 16, 959 (2016). https://doi.org/10.3390/s16070959
  10. W. Lee and Y. Roh, "Design and fabrication of a 1.75D ultrasonic transducer" (in Korean), J. Kr. Sens. Soc. 32, 199-207 (2013).
  11. Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, "Scatter search and local NLP solvers: a multistart framework for global optimization," INFORMS J. Comput. 19, 328-340 (2007). https://doi.org/10.1287/ijoc.1060.0175