DOI QR코드

DOI QR Code

Highly sensitive and selective detection of cyanide in aqueous solutions using a surface acoustic wave chemical sensor

표면음향파 화학센서를 이용한 수용액 중 시안화이온의 선택적인 고감도 검출

  • Lee, Soo Suk (Department of Pharmaceutical Engineering, Soon Chun Hyang University)
  • 이수석 (순천향대학교 의약공학과)
  • Received : 2016.10.12
  • Accepted : 2016.11.25
  • Published : 2016.11.30

Abstract

We report a highly selective and sensitive 200 MHz Surface Acoustic Wave (SAW) sensor that can detect cyanide ion in aqueous solution using surface immobilized thioester molecules in combination with gold nanoparticles (AuNPs). To construct the sensor device, a monolayer of thioester compound was immobilized on the SAW sensor surface. At the sensor surface, hydrolysis of thioester group by nucleophilic addition of cyanide occurred and the resulting free thiol unit bound to AuNP to form thiol-AuNP conjugate. For the signal enhancement, gold staining signal amplification process was introduced subsequently with gold (III) chloride trihydrate and reducing agent, hydroxylamine hydrochloride. The SAW sensor showed a detection ability of $17.7{\mu}M$ for cyanide in aqueous solution and demonstrated a saturation behavior between the frequency shift and the concentration of cyanide ion. On the other hand, our SAW sensor had no activities for other anions such as fluoride ion, acetate ion and sulfate ion, moreover, no significant interference observed by other anions. Finally, all the experiments were carried out in-house developed sensor and fluidics modules to obtain highly reproducible results.

본 연구는 센서 표면에 고정된 티오에스터 분자와 금 나노입자를 이용하여 수용액 중의 시안화이온(cyanide)을 선택적이고, 고민감도로 검출할 수 있는 200 MHz 표면음향파(Surface Acoustic Wave, SAW) 센서의 개발에 관한 것이다. SAW 센서표면에 형성된 티오에스터 단분자막은 시안화이온의 친핵성 첨가반응에 의해 가수분해되어 티올(thiol)이 만들어지고, 티올 분자는 다시 금 나노입자와 반응에 의해 티올-금 나노입자 복합체를 형성한다. 이후 신호증폭을 위해, gold(III) chloride trihydrate와 hydroxylamine hydrochloride 조합에 의한 금 나노입자의 사이즈 확대반응을 수행하였다. SAW 센서는 수용액 중에서 시안화이온에 대한 검출 능력이 17.7 uM이었으며, 공진주파수 변화량은 시안화이온의 농도가 커지면서 포화되는 현상을 보여주었다. 한편, 제작된 SAW 센서는 시안화이온 이외의 플루오라이드(fluoride), 아세테이트(acetate), 그리고 설페이트(sulfate) 이온 등의 다른 음이온에는 전혀 반응성이 없었으며, 다른 음이온에 의한 간섭현상도 나타나지 않았다. 끝으로 모든 실험은 재현성 있는 실험 결과를 얻기 위해서 자체 제작한 유체제어 모듈과 센서를 이용하여 진행하였다.

Keywords

References

  1. B. Vennesland, E. E. Comm, C. J. Knowles, J. Wesley, and F. Wissing, Cyanide in Biology (Academic Press, London, 1981), pp. 1-548.
  2. G. D. Muir, Hazards in the Chemical Laboratory (The Chemical Society, London, 1977), pp.1-473.
  3. R. Koenig, "Environmental disasters - wildlife deaths are a grim wake-up call in Eastern Europe," Science. 287, 1737-1738 (2000). https://doi.org/10.1126/science.287.5459.1737
  4. C. Young, L. Tidwell, and C. Anderson, "Cyanide: Social, industrial, and economic aspects," Minerals, Metals and Materials Society, Warrendale, PA, USA (2001).
  5. A. Rubo, R. Kellens, J. Reddy, J. Wooten, and W. Hasenpusch "Alkali Metal Cyanides" in Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2006).
  6. G. Qian, X. Li, and Z. Y. Wang, "Visible and nearinfrared chemosensor for colorimetric and ratiometric detection of cyanide," J. Mat. Chem. 19, 522-530 (2009). https://doi.org/10.1039/B813478B
  7. T. T. Christison and J. S. Rohrer, "Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection," J. Chromatogr. A. 1155, 31-39 (2007). https://doi.org/10.1016/j.chroma.2007.02.083
  8. M. Aguilar, A. Farran, and V. Marti, "Capillary electrophoretic determination of cyanide leaching solutions from automobile catalytic converters," J. Chromatogr. A. 778, 397-402 (1997). https://doi.org/10.1016/S0021-9673(97)00327-0
  9. Z. Li, X. Lou, H. Yu, Z. Li, and J. Qin, "An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide," Macromolecules. 41, 7433-7439 (2008). https://doi.org/10.1021/ma8013096
  10. D. Shan, C. Mousty, and S. Cosnier, "Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors," Anal. Chem. 76, 178-183 (2004). https://doi.org/10.1021/ac034713m
  11. M. Tomasulo, S. Sortino, A. J. P. White, and F. M. Raymo, "Fast and stable photochromic oxazines," J. Org. Chem. 70, 8180-8189 (2005). https://doi.org/10.1021/jo051417w
  12. L. Wang, X. He, Y. Guo, J. Xu, and S. Shao, "pH-Responsive chromogenic-sensing molecule based on bis(indolyl)methene for the highly selective recognition of aspartate and glutamate," Beilstein J. Org. Chem. 7, 218-221 (2011). https://doi.org/10.3762/bjoc.7.29
  13. R. Martinez, A. Espinosa, A. Tarraga, and P. Molina, "Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for $Cu^{2+}$ cations," Tetrahedron 64, 2184-2191 (2008). https://doi.org/10.1016/j.tet.2007.12.025
  14. X. He, S. Hu, K. Liu, Y. Guo, J. Xu, and S. Shao, "Oxidized Bis(indolyl)methane: A simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode," Org. Lett. 8, 333-336 (2006). https://doi.org/10.1021/ol052770r
  15. J. L. Sessler, D.-G. Cho, and V. Lynch, "Diindolylquinoxalines: Effective indole-based receptors for phosphate anion," J. Am. Chem. Soc. 128, 16518-16519 (2006). https://doi.org/10.1021/ja067720b
  16. H. Sun, Y. Y. Zhang, S. H. Si, D. R. Zhu, and Y. S. Fung, "Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water," Sens. Act. B: Chem. 108, 925-932 (2005). https://doi.org/10.1016/j.snb.2004.12.120
  17. Y. G. Timofeyenko, J. J. Rosentreter, and S. Mayo, "Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination," Anal. Chem. 79, 251-255 (2007). https://doi.org/10.1021/ac060890m
  18. K. Lange, B. E. Rapp, and M. Rapp, "Surface acoustic wave biosensors: a review," Anal. Bioanal. Chem. 391, 1509-1519 (2008). https://doi.org/10.1007/s00216-008-1911-5
  19. R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Appl. Phys. Lett. 7, 314-316 (1965). https://doi.org/10.1063/1.1754276
  20. J. Du, G. L. Harding, J. A. Ogilvy, P. R. Dencher, and M. Lake, "A study of Love-wave acoustic sensors," Sens. Act. A: Phys. 56, 211-219 (1996). https://doi.org/10.1016/S0924-4247(96)01311-8
  21. J. Sakong, Y. Roh, J. H. Kim, and S. S. Lee, "Improvement in sensitivity by increasing the frequency of SAW sensors for DNA detection" (in Korean), J. Acoust. Soc. Kr. 26, 42-47 (2007).
  22. H. J. Lee, K. Namkoong, E. C. Cho, C. Ko, J. C. Park, and S. S. Lee, "Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples," Biosens. Bioelec. 24, 3120-3125 (2009). https://doi.org/10.1016/j.bios.2009.04.009
  23. B. T. Holmes and A. W. Snow, "Aliphatic thioacetate deprotection using catalytic tetrabutylammonium cyanide," Tetrahedron 61, 12339-12342 (2005). https://doi.org/10.1016/j.tet.2005.09.092
  24. D. Kim, W. L. Daniel, and C. A. Mirkin, "Microarraybased multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes," Anal. Chem. 81, 9183-9187 (2009). https://doi.org/10.1021/ac9018389
  25. J. Kaur, K. V. Singh, R. Boro, K. R. Thampi, M. Raje, G. C. Varshney, and C. R. Suri, "Immunochromatographic dipstick assay format using gold nanoparticles labeled protein−hapten conjugate for the detection of atrazine," Environ. Sci. Tech. 41, 5028-5036 (2007). https://doi.org/10.1021/es070194j
  26. D. S. Ballantine, R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Woltjen, Acoustic Wave Sensors (Academic Press, New York, 1997), pp. 80-82.
  27. A. Shrivastava and V. B. Gupta, "Methods for the determination of limit of detection and limit of quantitation of the analytical methods," Chronicles of Young Scientists. 2, 21-25 (2011). https://doi.org/10.4103/2229-5186.79345