DOI QR코드

DOI QR Code

Prediction of Reaction Performance of Pentafluoropropene Hydrogenation for Environmentally Friendly Refrigerant Production

친환경 냉매 제조를 위한 오불화프로펜 수소화반응에 대한 예측

  • Yun, Mi Hee (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 윤미희 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2016.07.18
  • Accepted : 2016.08.05
  • Published : 2016.12.10

Abstract

In this study, hydrogenation of 1,2,3,3,3-pentafluoropropene was performed to produce R-1234yf as an environmentally friendly refrigerant. Palladium based carbon was prepared as a catalyst in the hydrogenation reaction. The effect of reaction conditions including the weight hourly space velocity (WHSV), reaction temperature and ratio of hydrogen and reactants on the catalytic performance was investigated. Under the identical reaction conditions, the effect of WHSV on the main product selectivity was insignificant, but a high reaction temperature was essential for the good product selectivity. A high product selectivity was also obtained when the ratio of hydrogen and reactants kept less than 1.5. Moreover, a correlation model involving the statistical approach to predict product yields was developed.

친환경 냉매인 R-1234yf를 제조하기 위하여 오불화프로펜인 1,2,3,3,3-pentafluoropropene의 수소화반응을 수행하였다. 수소화반응 촉매로 팔라듐이 담지된 탄소입자를 제조하여 실험에 사용하였다. 반응조건에 따른 수소화반응 활성을 규명하기 위하여 WHSV, 반응온도 및 반응물의 조성에 따른 반응성능에 대하여 조사하였다. 일정한 실험 조건에서 WHSV는 주 생성물의 선택도에 영향이 없으며, 반응온도의 경우 높은 온도에서 우수한 생성물 선택도를 보였다. 수소와 반응물의 비의 경우 1.5 미만에서 우수한 생성물 선택도를 보였다. 또한 반응조건에 따른 생성물의 수율을 예측할 수 있는 모델식을 통계학적 접근을 통해 완성하였다.

Keywords

References

  1. E. Granryd, Hydrocarbons as refrigerants-An overview, Int. J. refrig., 24, 15-24 (2001). https://doi.org/10.1016/S0140-7007(00)00065-7
  2. M. Mohanraj, S. Jayaraj, and C. Muraleedharan, Environment friendly alternatives to halogenated refrigerants-A review, Int. J. Greenhouse Gas Control, 3, 108-119 (2009). https://doi.org/10.1016/j.ijggc.2008.07.003
  3. K. Tanaka and Y. Higashi, Thermodynamic properties of HFO-1234yf (2,3,3,3-tetrafluoropropene), Int. J. refrig., 33, 474-479 (2010). https://doi.org/10.1016/j.ijrefrig.2009.10.003
  4. K. Tanaka, Y. Higashi, and R. Akasaka, Measurements of the isobaric specific heat capacity and density for HFO-1234yf in the liquid state, J. Chem. Eng. Data, 55, 901-903 (2010). https://doi.org/10.1021/je900515a
  5. K. Avril and B. Collier, Process for the preparation of fluorinated compounds, US Patent 8,389,779 (2013).
  6. B. A. Mahler, M. J. Nappa, and J. P. Knapp, Compositions comprising 3,3,3-trifluoropropyne, US Patent 8,147,709 (2012).
  7. Y. Chiu, S. A. Cottrell, H. S. Tung, H. Kopkalli, and G. Cerri, Process for the manufacture of fluorinated olefins, US Patent 9,302,963 (2016).
  8. M. Devic, D. Guillet, E. Guiraud, and L. Wendlinger, Method for preparing 2,3,3,3-tetrafluoro-1-propene, US Patent 8,329,964 (2012).
  9. C. S. Kim and K. S. Yoo, Effect of calcination temperature on catalytic activity of Pd/C particle prepared by ionic liquid for hexafluoropropylene hydrogenation, J. Nanosci. Nanotechnol., 14, 5508-5511 (2014). https://doi.org/10.1166/jnn.2014.8357
  10. C. S. Kim and K. S. Yoo, Structural effect of palladium on carbon catalyst for hexafluoropropylene hydrogenation, J. Nanosci. Nanotechnol., 15, 6214-6217 (2015). https://doi.org/10.1166/jnn.2015.10472
  11. R. E. Low and A. P. Sharratt, Process for the hydrogenation of pentafluoropropene, US Patent 8,471,078 (2013).
  12. J. B. Jeong and K. S. Yoo, Development of hexafluoropropylene hydrogenation with Pd/C particles prepared with 1-hexyl-3-methylimidazolium tetrafluoroborate, Appl. Chem. Eng., 24, 412-415 (2013).
  13. Z. Liu, X. Meng, R. Zhang, C. Xu, H. Dong, and Y. Hu, Reaction performance of isobutane alkylation catalyzed by a composite ionic liquid at a short contact time, AIChE J., 60, 2244-2253 (2014). https://doi.org/10.1002/aic.14394