DOI QR코드

DOI QR Code

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant

새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석

  • Lee, Byoung Jun (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Sang Bum (Department of Chemical Engineering, Kyonggi University)
  • Received : 2016.08.12
  • Accepted : 2016.10.04
  • Published : 2016.12.10

Abstract

In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.

본 연구에서는 새로운 비할로겐-인계 난연제를 포함하는 경질 폴리우레탄 폼[BHP-RPUF]과 할로겐-인계 난연제를 포함하는 경질 폴리우레탄 폼[TCPP-RPUF] 그리고 난연제를 포함하고 있지 않은 폴리우레탄 폼[Pure-RPUF]의 기계적 물성 및 난연 특성에 대해 비교 분석하였다. 새로운 비할로겐-인계 난연제인 bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate [BHP]는 disodium phenyl phosphate와 3-chloro-1-propanol의 반응을 통해 합성하였다. BHP-RPUF, TCPP-RPUF, 그리고 Pure-RPUF의 압축강도는 BHP-RPUF와 TCPP-RPUF가 비슷한 압축강도를 나타내었고, 열전도도에서는 BHP-RPUF가 TCPP-RPUF보다 낮은 값인 $0.023W/m{\cdot}K$를 갖는 것을 확인하였다. 반응속도와 SEM을 통해 기공의 크기를 측정하여 열전도도에 미치는 영향에 대하여 분석하였고, TGA 분석을 통해 내열성을 확인하였다. 난연성은 한계산소지수(Limited Oxygen Index) 측정 실험을 통하여, Pure-RPUF보다 BHP-RPUF에서 난연성이 향상됨을 확인하였다.

Keywords

References

  1. L. Shi, Z. M. Li, M. B. Yang, B. Yin, Q. M. Zhou, C. R. Tian, and J. H. Wang, Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams, Polym. Plast. Technol. Eng., 44(7), 1323-1337 (2005). https://doi.org/10.1080/03602550500208145
  2. C. Yang, Z. H. Zhuang, and Z. G. Yang, Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam. J. Appl. Sci., 131(1), 1-7 (2014).
  3. M. C. Saha, M. E. Kabir, and S. Jeelani, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticle, Mater. Sci. Eng. A, 479, 213-222 (2008). https://doi.org/10.1016/j.msea.2007.06.060
  4. Y. H. Song, D. M. Ha, and K. S. Chung, Assessment of combustion property for epoxy/montmorillonite composite, Proceedings of Korean Institute of Fire Science and Engineering Spring Conference, 4, 168-171 (2008).
  5. P. A. Atkinson, P. J. Haines, G. A. Skinner, and T. J. Lever, Studies of fire-retardant polyester thermosets using thermal methods, J. Therm. Anal. Calorim., 59, 395-408 (2000). https://doi.org/10.1023/A:1010129206206
  6. T. S. Hwang, B. J. Lee, Y. K. Yang, J. H. Choi, and H. J. Kim, The R&D trends of polymer flame retardants, Korean Ind. Chem. News, 8(6), 36-53 (2005)
  7. K. Y. Kim, W. J. Seo, J. C. Lee, J. S. Seo, and S. B. Kim, Effect of flame retardants on flame retardancy of rigid polyurethane foam, J. Korean Inst. Gas, 17(5), 75-80 (2013). https://doi.org/10.7842/kigas.2013.17.5.75
  8. B. N. Jang and J. H. Choi, Research trend of flame retardant and flame retardant resin, Polym. Sci. Technol., 20(1), 8-15 (2009).
  9. Y. G. Han, S. K. Min, and C. Y. Park, Synthesis and characterization of non-halogen type phosphorus-based flame retardant, Elastom. Compos., 49(4), 313-322 (2014). https://doi.org/10.7473/EC.2014.49.4.313
  10. Y. J. Chung, Flame retardant properties of polyurethane by the addition of phosphorus compounds, Fire Sci. Eng., 20(4), 110-115 (2006).
  11. M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, and M. Gleria, Thermally stable hybrid foams based on cyclophosphazenes and polyurethanes, Polym. Degrad. Stab., 87, 287-292 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.023
  12. R. Yang, W. Hu, L. Xu, Y. Song, and J. Li, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate, Polym. Degrad. Stab., 122, 102-109 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.10.007
  13. W. Xu, and G. Wang, Influence of thermal behavior of phosphorus compounds on their flame retardant effect in PU rigid foam, Fire Mater., 40(6), 826-835 (2016). https://doi.org/10.1002/fam.2346
  14. H. Ma, L. Tong, Z. Xu, Z. Fang, Y. Jin, and F. Lu, A novel intumescent flame retardant: Synthesis and application in ABS copolymer, Polym. Degrad. Stab., 92(4), 720-726 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.12.009
  15. D. Chen, Y. Wang, X. Hu, D. Wang, M. Qu, and B. Yang, Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics, Polym. Degrad. Stab., 88(2), 349-356 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.11.010
  16. C. B. Kim and S. B. Kim, Effect of halogen-phosphorus flame retardant content on properties of rigid polyurethane foam. Appl. Chem. Eng., 24(1), 77-81 (2013).
  17. S. H. Koh and S. B. Kim, Physical properties of rigid polyurethane foams prepared by co-blowing agents, Appl. Chem., 8(1), 53-58 (2004).
  18. I. Vitkauskiene, R. Makuska, U. Stirna, and U. Cabulis, Thermal properties of polyurethane-polyisocyanurate foams based on poly (ethylene terephthalate) waste, Mater. Sci., 17(3), 249-253 (2011).

Cited by

  1. 내충격성 및 전기적 특성 향상을 위한 반도전성 난연컴파운드의 나노융복합 소재기술에 대한 연구 vol.12, pp.1, 2021, https://doi.org/10.15207/jkcs.2021.12.1.193
  2. 교반기의 임펠러 형태에 따른 폴리우레탄 폼의 미세구조와 물성 연구 vol.34, pp.1, 2016, https://doi.org/10.7234/composres.2021.34.1.016
  3. An Effective Expanded Graphite Coating on Polystyrene Bead for Improving Flame Retardancy vol.14, pp.21, 2016, https://doi.org/10.3390/ma14216729