DOI QR코드

DOI QR Code

A Study on Dimethacryloyloxy Alkane Derivatives Having an Anti-wear Performance as Lubricating Oil Additives

윤활유첨가제로써 마모억제 성능을 갖는 Dimethacryloyloxy Alkane 유도체에 관한 연구

  • Han, Hye-Rim (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology) ;
  • Cho, Jung-Eun (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology) ;
  • Sim, Dae-Seon (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kang, Chung-Ho (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Wun (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jeong, Noh-Hee (Department of Engineering Chemistry, Chungbuk National University) ;
  • Kang, Ho-Cheol (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology)
  • 한혜림 (한국화학연구원 바이오화학 연구센터) ;
  • 조정은 (한국화학연구원 바이오화학 연구센터) ;
  • 심대선 (한국화학연구원 바이오화학 연구센터) ;
  • 강충호 (한국화학연구원 바이오화학 연구센터) ;
  • 김영운 (한국화학연구원 바이오화학 연구센터) ;
  • 정노희 (충북대학교 공업화학과) ;
  • 강호철 (한국화학연구원 바이오화학 연구센터)
  • Received : 2016.08.30
  • Accepted : 2016.09.27
  • Published : 2016.12.10

Abstract

Lubricant additives including zinc dialkyldithiophosphate (ZDDP) containing metal have been widely used due to the advantage of very low cost, but they can generate impurities such as ash. In this work, ZDDP containing metals was partially replaced with bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4s) which was synthesized conveniently and effectively from alkanediol without any metal components. Also, the wear resistance property of synthesized BAP4s were studied. Wear scar diameter (WSD) values of BAP4s with butyl, octyl, decyl, dodecyl or tetradecyl groups were also measured by four-ball test. As the length of the alkyl group increased from 4 to 8, the WSD value of BAP4s decreased rapidly from 0.59 to 0.45 mm, but from 8 to 14, the value increased very slowly from 0.45 to 0.50 mm. Thus, among all BAP4s, B8P4 having BAP4 with the octyl group, showed the lowest WSD value. Furthermore, the WSD values were measured in a lubricant base oil mixed with a 0.50 percent concentration (w/w) of either BAP4 or ZDDP. The former was 0.55 mm, and the latter was 0.45 mm. The thermal stability and tribofilm formation peroperty were also measured by thermogravimetric analyzer (TGA) and energy-dispersive X-rays spectroscopy (EDS), respectively.

Zinc dialkyldithiophosphate (ZDDP)와 같이 금속을 포함한 윤활유 첨가제는 값이 싸다는 이점 때문에 널리 사용되고 있으나, 재와 같은 불순물이 발생한다는 단점이 있다. 본 연구에서는 ZDDP를 부분적으로 대체하여 zinc와 같은 금속을 포함하지 않는 구조인 알칸디올로부터 유래하는 bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane(BAP4)을 간편하고 효율적으로 합성하였고, 합성한 BAP4 화합물들에 따른 내 마모 특성을 살펴보았다. 여러 가지 알킬기가 있는 BAP4 화합물들이 4-ball 시험법에 의해 마모 직경(Wear scar diameter, WSD) 값이 측정되었다. BAP4 화합물에서 알킬기가 4에서 8로 증가함에 따라 WSD 값은 0.59 mm에서 0.45 mm로 급격히 감소했으나, BAP4의 알킬기가 8에서 14로 증가할 경우 WSD 값은 0.45 mm에서 0.50 mm로 서서히 증가했다. 따라서 BAP4 화합물 중 가장 WSD 값이 적게 나타난 것은 B8P4이었다. 윤활기유에 B8P4와 ZDDP를 0.50 wt%로 첨가하여 4-ball 시험을 실시한 결과, B8P4와 ZDDP의 WSD 값은 각각 0.45, 0.54 mm로 측정되었다. 또한, 열 중량 분석기(Thermogravimetric Analyzer, TGA)를 통해 열안정성을 확인하였고, 에너지 분산형 X-선 분광분석기(Energy-Dispersive X-rays Spectroscopy, EDS)로 tribofilm이 제대로 형성되었는지를 측정하였다.

Keywords

References

  1. F. U. Shah, S. Glavatskih, E. Hoglund, M. Lindberg, and O. N. Antzutkin, Interfacial antiwear and physicochemical properties of Alkylborate-dithiophosphates, ACS Appl. Mater. Interfaces, 3, 956-968 (2011). https://doi.org/10.1021/am101203t
  2. P. A. Willermet, Some engine oil additives and their effects on antiwear film formation, Tribol. Lett., 5, 41-47 (1998). https://doi.org/10.1023/A:1019148415074
  3. M. A. Nicholls, T. Do, P. R. Norton, M. Kasrai, and G. M. Bancroft, Review of the lubrication of metallic surfaces by zinc dialkyl- dithiophosphates, Tribol. Int., 38, 15-39 (2005). https://doi.org/10.1016/j.triboint.2004.05.009
  4. H. C. Freuler, Modified lubricating oil, US Patent 2,364,283 (1994).
  5. H. C. Freuler, Modified lubricating oil, US Patent 2,364,284 (1944).
  6. J. S. McQueen, H. Gao, E. D. Black, A. K. Gangopadhyay, and R. K. Jensen, Friction and wear of tribofilms formed by zinc dialkyl dithiophosphate antiwear additive in low viscosity engine oils, Tribol. Int., 38, 289-297 (2005). https://doi.org/10.1016/j.triboint.2004.08.019
  7. H. Spikes, The history and mechanisms of ZDDP, Tribol. Lett., 17, 469-489 (2004). https://doi.org/10.1023/B:TRIL.0000044495.26882.b5
  8. H. Spikes, Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils, Lubrication Sci., 20, 103-136 (2008). https://doi.org/10.1002/ls.57
  9. A. M. Barnes, K. D. Bartle, and V. R. A. Thibon, A review of zinc dialkyldithiophosphates (ZDDPS) : Characterisation and role in the lubrication oil, Tribol. Int., 34, 389-395 (2001). https://doi.org/10.1016/S0301-679X(01)00028-7
  10. J. M. Martin, Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach, Tribol. Lett., 6, 1-8 (1999). https://doi.org/10.1023/A:1019191019134
  11. M. Fuller, Z. Yin, M. Kasrai, G. M. Bancroft, E. S. Yamaguchi, P. R. Ryason, P. A. Willermet, and K. H. Tan, Chemical characterization of tribochemical and thermal films generated from neutral and basic ZDDPs using X-ray absorption spectroscopy, Tribol. Int., 30, 305-315 (1997). https://doi.org/10.1016/S0301-679X(96)00059-X
  12. Y. L. Wu and B. Dacre, Effects of lubricant-additives on the kinetics and mechanisms of ZDDP adsorption on steel surfaces, Tribol. Int., 30, 445-453 (1997). https://doi.org/10.1016/S0301-679X(97)00022-4
  13. I. Mahdi, R. Garg, and A. Srivastav, ZDDP- An inevitable lubricant additive for engine oils, Int. J. Eng. Invent., 1, 47-48 (2012).
  14. P. A. Willermet, D. P. Dailey, R. O. Carter III, P. J. Schmitz, and W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribol. Int., 28, 177-187 (1995). https://doi.org/10.1016/0301-679X(95)98965-G
  15. M. N. Najman, M. Kasrai, G. M. Bancroft, and A. Miller, Study of the chemistry of films generated from phosphate ester addtivies on 52100 steel using X-ray absorption spectroscopy, Tribol. Lett., 13, 209-218 (2002). https://doi.org/10.1023/A:1020164127000
  16. Z. Yin, M. Kasrai, M. Fuller, G. M. Bancroft, K. Fyfe, and K. H. Tan, Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP. Part I: the effects of physical parameters, Wear, 202, 172-191 (1997). https://doi.org/10.1016/S0043-1648(96)07272-9
  17. Z. Yin, M. Kasrai, M. Fuller, G. M. Bancroft, K. Fyfe, and K. H. Tan, Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP Part II: the effect of detergents and dispersants, Wear, 202, 192-201 (1997). https://doi.org/10.1016/S0043-1648(96)07273-0
  18. S. M. Hsu and R. S. Gates, Boundary lubricating films: formation and lubrication mechanism, Tribol. Int., 38, 305-312 (2005). https://doi.org/10.1016/j.triboint.2004.08.021
  19. M. L. S. Fuller, M. Kasrai, G. M. Bancroft, K. Fyfe, and K. H. Tan, Solution decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal film formation studied by X-ray absorption spectroscopy, Tribol. Int., 31, 627-644 (1998). https://doi.org/10.1016/S0301-679X(98)00084-X
  20. S. S. V. Ramakumar, A. M. Rao, and S. P. Srivastava, Studies on additive-additive interaction: formation of crankcase oil towards rationalization, Wear, 156, 101-120 (1992). https://doi.org/10.1016/0043-1648(92)90147-Z
  21. K. Inoue and H. Watanabe, Interactions of engine oil additives, ASLE Trans., 26, 189-199 (1983). https://doi.org/10.1080/05698198308981493
  22. Ph. Kapsa, J. M. Martin, C. Blanc, and J. M. Georges, Antiwear mechanism of ZDDP in the presence of calcium sulphonate detergent, J. Lubrication Technol., 103, 486-496 (1981).