DOI QR코드

DOI QR Code

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin

오염된 물로부터 이온교환수지를 이용한 방사성이온 제거

  • Shin, Do Hyoung (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Ju, Ko Woon (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 신도형 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 주고운 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Received : 2016.10.26
  • Accepted : 2016.11.08
  • Published : 2016.12.10

Abstract

In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.

본 연구에서는 상용화된 양이온교환수지, 음이온교환수지, 혼합이온교환수지 각각 3종을 이용하여 Cs과 I 등의 방사성이온을 포함하고 있는 오염수 중 방사성 이온을 분리하는 연구를 하였다. 실험은 상온에서 회분식으로 진행하였으며, 이온교환수지의 양을 달리하여 각각의 이온교환수지에 대한 Cs와 I의 제염성능을 비교하였다. 이온크로마토그라피 기기로 농도분석을 한 결과, D사의 이온교환수지의 대체적으로 이온교환능력이 높은 결과 값을 가졌으며, 공통적으로 이온교환수지의 양이 적을 때, 이온교환수지 질량 대비 제염성능이 높은 것을 알 수 있었다. D사의 양이온교환수지의 질량이 적을 때, Cs 이온에 대한 이온교환용량은 0.199 meq/g, 음이온교환수지의 I 이온에 대한 이온교환용량은 0.344 meq/g의 결과 값을 확인할 수 있었으며, 혼합이온수지를 사용했을 때에는 I 이온에 대한 이온교환용량이 0.33 meq/g으로, D사의 이온교환수지가 다른 이온교환수지에 비해 특히 I에 대한 이온교환능력이 높은 것을 알 수 있었다.

Keywords

References

  1. H. F. Walton and Roy D. Rocklin, Ion exchange in analytical chemistry, J. Chem. Educ., 42, 111-115 (1990).
  2. O. Samuelson and Lars O. Wallenius, Anion exchange separations of aldobionic and aldonic acids, J. Chromatogr. A, 12, 236-241 (1963). https://doi.org/10.1016/S0021-9673(01)83675-X
  3. G. J. Millar, S. J. Couperthwaite, M. de Bruyn, and C. W. Leung, Ion exchange treatment of saline solutions using Lanxess S108H strong acid cation resin, Chem. Eng. J., 280, 525-535 (2015). https://doi.org/10.1016/j.cej.2015.06.008
  4. C. S. Lee, The current of ultrapure water system, Membr. J., 6, 127-140 (1996).
  5. J. Wang and Zh. Wan, Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry, Prog. Nucl. Energy, 78, 47-55 (2015). https://doi.org/10.1016/j.pnucene.2014.08.003
  6. G. J. Jeong, K. W. Lee, B. S. Kim, S. W. Lee, J. G. Lee, and A. M. Koo, Study on removal of artificial radionuclide (I-131) in water, J. Korean Soc. Environ. Eng., 36, 747-752 (2014). https://doi.org/10.4491/KSEE.2014.36.11.747
  7. T. A. Todd and V. N. Romanovskiy, A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste, Radiochemistry, 47, 398-402 (2005). https://doi.org/10.1007/s11137-005-0109-3
  8. F. Sebesta and V. Stefura, Composite ion exchanger with ammonium molybdophosphate and its properties, J. Radioanal. Nucl. Chem., 140, 15-21 (1990). https://doi.org/10.1007/BF02037360
  9. T. A. Todd, N. R. Mann, T. J. Tranter, F. Sebesta, J. John, and A. Motl, Cesium adsorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents, J. Radioanal. Nucl. Chem., 254, 47-52 (2002). https://doi.org/10.1023/A:1020881212323
  10. Y. Park, W. S. Shin, and S. J. Choi, Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): An efficient ion exchanger for cesium ion, Chem. Eng. J., 220, 204-213 (2013). https://doi.org/10.1016/j.cej.2013.01.027
  11. A. M. El-Kamash, Evaluation of zeolite a for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous using batch and fixed bed column operations, J. Hazard. Mater., 151, 432-445 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  12. A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, and R. Zarghami, Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution, Chem. Eng. J., 172, 572-580 (2011). https://doi.org/10.1016/j.cej.2011.06.011
  13. Y. Park, Y. C. Lee, W. S. Shin, and S. J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN), Chem. Eng. J., 162, 685-695 (2010). https://doi.org/10.1016/j.cej.2010.06.026
  14. T. J. Tranter, R. S. Herbst, T. A. Todd, A. L. Olson, and H. B. Eldredge, Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of $^{137}Cs$ from acidic nuclear waste solutions, Adv. Environ. Res., 6, 107-121 (2002). https://doi.org/10.1016/S1093-0191(00)00073-3
  15. A. V. Panov, R. M. Alexakhin, P. V. Prudnikov, A. A. Novikov, and A. A. Muzalevskaya, Influence of protective activity on $^{137}Cs$ accumulation by farming plants from soil after Chernobyl accident, Pedology J., 4, 484-497 (2009).
  16. A. A. Odintsov, A. D. Sazhenyuk, and V. A. Satsyuk, Association of $^{90x}Sr,\;^{137}Cs,\;^{349,240}Pu,\;^{241}Am$, and $^{244}Cm$ with soil absorbing complex in soils typical of the vicinity of the Cherobyl NPP, Radiochem., 46, 95-101 (2005).
  17. I. G. Teplyakov, G. N. Romanov, and D. A. Spirin, Returning of lands in East-Ural radioactive trace to farming use, Radiat. Saf. Quest., 3, 33-41 (1997).
  18. H. Kato, Y. Onda, and M. Teramage, Depth distribution of $^{137}Cs,\;^{134}Cs,\;and\;^{131}I$ in soil profile after Fukushima Dai-ichi nuclear power plant accident, J. Environ. Radioact., 111, 59-64 (2012). https://doi.org/10.1016/j.jenvrad.2011.10.003
  19. M. Nakano and R. N. Yong, Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant, Eng. Geol., 155, 87-93 (2013). https://doi.org/10.1016/j.enggeo.2012.12.010
  20. S. Samatya, N. Kabay, U. Yuksel, M. Arda, and M. Yusel, Removal of nitrate from aqueous solution by nitrate selective ion exchange resins, React. Funct. Polym., 66, 1206-1214 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.03.009
  21. F. Helfferilch, Ion Exchange, Chaps. 1, 4, 5, 6, McGraw-Hill Book Company Inc., NY, USA (1990).
  22. I. M. Abrams and J. R. Millar, A history of the origin and development of macroporous ion-exchange resins, Funct. Polym., 35, 7-22 (1997). https://doi.org/10.1016/S1381-5148(97)00058-8
  23. C. W. Han, G. In, J. M. Choi, S. T. Kim, and Y. S. Kim, Preconcentration and determination of trace cobalt and nickel by the adsorption of Metal-PDC complexes on the Anion-exchange resin suspension, Anal. Sci. Technol., 13, 608-661 (2000).
  24. N. Imchuen, Y. Lubphoo, J. M. Chyan, S. Padungthon, and C. H. Liao, Using cation exchange resin for ammonium removal as part of sequential process for nitrate reduction by nanoiron, Sustain. Environ. Res., 26, 156-160 (2016). https://doi.org/10.1016/j.serj.2016.01.002
  25. G. J. Millar, A. Schor, S. J. Couperthwaite, A. Shilling, K. Nuttall, and M. de Bruyn, Equilibrium and column studies of iron exchange with strong acid cation resin, J. Environ. Chem. Eng., 3, 373-385 (2015). https://doi.org/10.1016/j.jece.2014.12.023
  26. G. J. Millar, S Papworth, and S. J. Couperthwaite, Exploration of the fundamental equilibrium behaviour of calcium exchange with weak acid cation resins, Desalination, 351, 27-36 (2014). https://doi.org/10.1016/j.desal.2014.07.022
  27. D. S. Stefan and I. Meghea, Mechanism of simultaneous removal of $Ca^{2+},\;Ni^{2+},\;Pb^{2+}\;and\;Al^{3+}$ ions from aqueous solutions using $Purolite^{(R)}$ S930 ion exchange resin, C. R. Chim., 17, 496-502 (2014). https://doi.org/10.1016/j.crci.2013.09.010
  28. A. Zaggia, L. Conte, L. Falletti, M. Fant, and A. Chiorboli, Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants, Water Res., 91, 137-146 (2016). https://doi.org/10.1016/j.watres.2015.12.039
  29. Z. Zhu, M. Zhang, F. Liu, C. Shuang, C. Zhu, Y. Zhang, and A. Li, Effect of polymeric matrix on the adsorption of reactive dye by anion-exchange resins, J. Taiwan Inst. Chem. Eng., 62, 98-103 (2016). https://doi.org/10.1016/j.jtice.2016.01.017
  30. H. Tavakoli, H. Sepefrian, F. Semnani, and M. Samadfam, Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: Breakthrough curves, elution behavior and modeling studies, Ann. Nucl. Energy, 54, 149-153 (2013). https://doi.org/10.1016/j.anucene.2012.11.012
  31. C. Long, J. D. Lu, A. Li, D. Hu, F. Liu, and Q. Zhang, Adsorption of naphthalene onto the carbon adsorbent from waste ion exchange resin: Equilibrium and kinetic characteristics, J. Hazard Mater., 150, 656-661 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.015
  32. E. W. Berg, Physical and Chemical Methods of Separation, Chaps. 10, 11, McGraw-Hill Book Company, Inc., NY, USA (1963).

Cited by

  1. Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 vol.17, pp.1, 2016, https://doi.org/10.7733/jnfcwt.2019.17.1.59