DOI QR코드

DOI QR Code

Efficient Triplet-triplet Annihilation-based Upconversion in Vegetable Oils

식물성 오일에서 구현되는 삼중항-삼중항 소멸법에 의한 Upconversion 분석

  • Shin, Sung Ju (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Choe, Hyun Seok (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Park, Eun-Kyoung (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Kyu, Hyun (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Han, Sangil (Department of Chemical Engineering, Changwon National University) ;
  • Kim, Jae Hyuk (Department of Chemical and Environmental Engineering, Pusan National University)
  • 신성주 (부산대학교 화공생명.환경공학부) ;
  • 최현석 (부산대학교 화공생명.환경공학부) ;
  • 박은경 (부산대학교 화공생명.환경공학부) ;
  • 현규 (부산대학교 화공생명.환경공학부) ;
  • 한상일 (창원대학교 화공시스템공학과) ;
  • 김재혁 (부산대학교 화공생명.환경공학부)
  • Received : 2016.11.09
  • Accepted : 2016.11.23
  • Published : 2016.12.10

Abstract

We herein report efficient triplet-triplet annihilation upconversion (TTA-UC) achieved in various non-toxic and non-volatile vegetable oils as a UC media using platinum-octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA) as a sensitizer and acceptor, respectively. Green-to-blue UC was readily achieved from PtOEP/DPA solution in vegetable oils with the quantum yield of 8% without any deoxygenation process. The UC efficiency was found to be significantly dependent on the contents of unsaturated hydrocarbon in vegetable oils and viscosity of the solution, as well. Though the Stern-volmer constant and quantum yield in vegetable oils were measured to be lower than those measured in the deaerated organic solvent, the quenching efficiency was still high enough to be 93%. In the sunflower oil, the UC threshold intensity ($I_{th}$) was approx. $100mW/cm^2$, which is far larger than the sunlight intensity, but we believe that the UC achieved in non-toxic and air-saturated media was still highly applicable to nontraditional visualization techniques such as bioimaging.

본 연구는 음용가능한 수준의 비독성, 비휘발성 식물성 오일에서 PtOEP와 DPA를 광감응제와 전자수용체로 이용해 구현되는 효율적인 TTA-UC현상에 대해 보고하고 있다. 다양한 종류의 식물성 오일에 PtOEP/DPA를 담지시켰을 때, 탈산소 공정없이도 532 nm의 입사 레이저에서 430 nm 영역의 선명한 green-to-blue UC현상이 관측되었으며, 양자수율은 약 8%로 측정되었다. 이러한 UC의 효율은 식물성 오일의 화학적 조성, 특히 불포화 탄화수소의 함량과 점도에 크게 의존하는 것으로 나타났다. 식물성 오일에서의 Stern-Volmer 상수값은 유기용매에 비해 다소 낮은 값을 보였으나, 전환효율은 93% 정도로 여전히 높은 수치를 보여주었다. 해바라기씨유에서 UC의 전환 입사광 강도($I_{th}$)는 약 $100mW/cm^2$로 태양광의 직접활용에는 아직 무리가 있으나, 산소포화조건에서 비독성 매질을 통해 즉각적으로 구현되는 UC는 비전통적인 방식의 bioimaging과 같은 기술에의 응용가능성이 높을 것으로 생각된다.

Keywords

References

  1. J. H. Kim and J. H. Kim, Encapsulated triplet-triplet annihilation- based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis, J. Am. Chem. Soc., 134, 17478-17481 (2012). https://doi.org/10.1021/ja308789u
  2. Q. Liu, B. R. Yin, T. Yang, Y. Yang, Z. Shen, P. Yao, and F. Li, A general strategy for biocompatible, high-effective upconver-sion nanocapsules based on triplet-triplet annihilation, J. Am. Chem. Soc., 135, 5029-5037 (2013). https://doi.org/10.1021/ja3104268
  3. T. F. Schulze, J. Czolk, Y. Cheng, B. Fuckel, R. W. MacQueen, T. Khoury, M. J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann, and T. W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion, J. Phys. Chem. C, 116, 22794-22801 (2012). https://doi.org/10.1021/jp309636m
  4. T. F. Schulze and T. W. Schmidt, Photochemical upconversion: present status and prospects for its application to solar energy conversion, Energy Environ. Sci., 8, 103-125 (2015). https://doi.org/10.1039/C4EE02481H
  5. T. N. Singh-Rachford and F. N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation, Coord. Chem. Rev., 254, 2560-2573 (2010). https://doi.org/10.1016/j.ccr.2010.01.003
  6. R. R. Islangulov, D. V. Kozlov, and F. N. Castellano, Low power upconversion using MLCT sensitizers, Chem. Commun., 30, 3776-3778 (2005).
  7. W. Zhao and F. N. Castellano, Upconverted emission from pyrene and di-tert-butylpyrene using $Ir(ppy)_3$ as triplet sensitizer, J. Phys. Chem. A, 110, 11440-11445 (2006). https://doi.org/10.1021/jp064261s
  8. T. N. Singh-Rachford, A. Haefele, R. Ziessel, and F. N. Castellano, Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes, J. Am. Chem. Soc., 130, 16164-16165 (2008). https://doi.org/10.1021/ja807056a
  9. J. H. Kim, F. Deng, F. N. Castellano, and J. H. Kim, High efficiency low-power upconverting soft materials, Chem. Mater., 24, 2250-2252 (2012). https://doi.org/10.1021/cm3012414
  10. J. H. Kim and J. H. Kim, Triple-emulsion microcapsules for highly efficient multispectral upconversion in the aqueous phase, ACS Photonics, 2, 633-638 (2015). https://doi.org/10.1021/acsphotonics.5b00042
  11. A. Monguzzi, F. Bianchi, A. Bianchi, M. Mauri, R. Simonutti, R. Ruffo, R. Tubino, and F. Meinardi, High efficiency up-converting single phase elastomers for photon managing applications, Adv. Energy Mater., 3, 680-686 (2013). https://doi.org/10.1002/aenm.201200897
  12. J. Peng, X. Guo, X. Jiang, D. Zhao, and Y. Ma, Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films, Chem. Sci., 7, 1233-1237 (2016). https://doi.org/10.1039/C5SC03245H
  13. P. B. Merkel and J. P. Dinnocenzo, Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films, J. Lumin., 129, 303-306 (2009). https://doi.org/10.1016/j.jlumin.2008.10.013
  14. M. Penconi, F. Ortica, F. Elisei, and P. L. Gentili, New molecular pairs for low power non-coherent triplet-triplet annihilation based upconversion: dependence on the triplet energies of sensitizer and emitter, J. Lumin., 135, 265-270 (2013). https://doi.org/10.1016/j.jlumin.2012.09.033
  15. T. Ogawa, N. Yanai, A. Monguzzi, and N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems, Sci. Rep., 5, 10882 (2015). https://doi.org/10.1038/srep10882