DOI QR코드

DOI QR Code

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis

급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구

  • Choi, Sang Kyu (Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Choi, Yeon Seok (Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Kim, Seock Joon (Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Han, So Young (Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials)
  • 최상규 (한국기계연구원 환경에너지기계연구본부) ;
  • 최연석 (한국기계연구원 환경에너지기계연구본부) ;
  • 김석준 (한국기계연구원 환경에너지기계연구본부) ;
  • 한소영 (한국기계연구원 환경에너지기계연구본부)
  • Received : 2016.11.11
  • Accepted : 2016.11.17
  • Published : 2016.12.10

Abstract

Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

바이오매스는 최근 화석연료의 고갈 및 지구온난화 등의 문제에 대응하기 위한 신재생에너지원으로 많은 관심을 받고 있다. 바이오오일은 폐목재, 농업 및 임업 부산물 등의 바이오매스로부터 급속열분해 과정을 통하여 생산되는 액체연료이다. 바이오오일은 일반적인 석유 계통의 연료에 비하여 점도가 매우 높고 고체상의 불순물을 포함하고 있어 버너 적용시 스프레이 분무 특성이 저하된다. 또한, 바이오오일은 셀룰로오스, 헤미셀룰로오스, 리그닌으로부터 유래되는 수백 종류의 화학종들로 이루어져 있어 일반적인 액체연료와는 액적의 증발 특성이 뚜렷하게 구분된다. 본 연구에서는, 바이오오일의 구성 성분을 아세트산, 레보글루코산, 페놀, 수분으로 단순화하여 액적의 증발 특성에 관한 수치해석적 연구를 수행하였다. 다양한 주위공기 온도, 액적의 초기 지름, 에탄올 혼합 비율에 대하여 액적의 증발 특성을 비교하였다. 주위공기 온도가 높아질수록 바이오오일 액적의 증발 시간은 짧아졌으며, 특히 낮은 온도 범위에서는 증발 시간이 공기온도에 매우 민감하였다. 또한 액적의 지름이 감소할수록, 에탄올 혼합 비율이 증가할수록 증발 시간이 단축됨을 알 수 있었다.

Keywords

References

  1. S. Czernik and A. V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy Fuels, 18, 590-598 (2004). https://doi.org/10.1021/ef034067u
  2. L. Qiang, L. Wen-Zhi, and Z. Xi-Feng, Overview of fuel properties of biomass fast pyrolysis oils, Energy Convers. Manag., 50, 1376-1383 (2009). https://doi.org/10.1016/j.enconman.2009.01.001
  3. A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy, 38, 68-94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048
  4. B. M. Wagenaar, W. Prins, and W. P. M. Van Swaaij, Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification, Chem. Eng. Sci., 49, 5109-5126 (1994). https://doi.org/10.1016/0009-2509(94)00392-0
  5. L. Ingram, D. Mohan, M. Bricka, P. Steele, D. Strobel, D. Crocker, et al., Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils, Energy Fuels, 22, 614-625 (2008). https://doi.org/10.1021/ef700335k
  6. A. R. Fernandez-Akarregi, J. Makibar, G. Lopez, M. Amutio, and M. Olazar, Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis, Fuel Process. Technol., 112, 48-56 (2013). https://doi.org/10.1016/j.fuproc.2013.02.022
  7. Y. S. Choi, S. K. Choi, and Y. W. Jeong, Development of a tilted- slide reactor for the fast pyrolysis of biomass, Environ. Prog. Sustain. Energy, 33, 1405-1410 (2014).
  8. M. J. Wornat, B. G. Porter, and N. Y. C. Yang, Single droplet combustion of biomass pyrolysis oils, Energy Fuels, 8, 1131-1142 (1994). https://doi.org/10.1021/ef00047a018
  9. C. R. Shaddix and D. R. Hardesty, Combustion Properties of Biomass Flash Pyrolysis Oils, SAND99-8238, Sandia National Laboratories (1999).
  10. J. D'Alessio, M. Lazzaro, P. Massoli, and V. Moccia, Thermo-optical investigation of burning biomass pyrolysis oil droplets, in: Twenty-seventh Symposium (International) on Combustion, pp. 1915-1922 (1998).
  11. D. Chiaramonti, A. Oasmaa, and Y. Solantausta, Power generation using fast pyrolysis liquids from biomass, Renew. Sustain. Energy Rev., 11, 1056-1086 (2007). https://doi.org/10.1016/j.rser.2005.07.008
  12. A. Oasmaa, M. Kyto, and K. Sipila, Pyrolysis oil combustion tests in an industrial boiler, In: A.V. Bridgwater (Ed.), Progress in Thermochemical Biomass Conversion, 1468-1481, Blackwell Science, Oxford, U.K. (2001).
  13. G. Lopez Juste and J. J. Salva Monfort, Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor, Biomass Bioenergy, 19, 119-128 (2000). https://doi.org/10.1016/S0961-9534(00)00023-4
  14. R. Strenziok, U. Hansen, and H. Kunstner, Combustion of bio-oil in a gas turbine, In: A.V. Bridgwater (Ed.), Progress in Thermochemical Biomass Conversion, 1452-1458, Blackwell Science, Oxford, U.K. (2001).
  15. Y. Solantausta, N. O. Nylund, and S. Gust, Use of pyrolysis oil in a test diesel engine to study the feasibility of a diesel power plant concept, Biomass Bioenergy, 7, 297-306 (1994). https://doi.org/10.1016/0961-9534(94)00072-2
  16. A. Shihadeh and S. Hochgreb, Diesel engine combustion of biomass pyrolysis oils, Energy Fuels, 14, 260-274 (2000). https://doi.org/10.1021/ef990044x
  17. V. Stamatov, D. Honnery, and J. Soria, Combustion properties of slow pyrolysis biooil produced from indigenous Australian species, Renew. Energy, 31, 2108-2121 (2006). https://doi.org/10.1016/j.renene.2005.10.004
  18. D. Nguyen and D. Honnery, Combustion of bio-oil ethanol blends at elevated pressure, Fuel, 87, 232-243 (2008). https://doi.org/10.1016/j.fuel.2007.04.023
  19. J. L. Zheng and Y. P. Kong, Spray combustion properties of fast pyrolysis bio-oil produced from rice husk, Energy Convers. Manag., 51, 182-188 (2010). https://doi.org/10.1016/j.enconman.2009.09.010
  20. T. Tzanetakis, N. Farra, S. Moloodi, W. Lamont, A. McGrath, and M. J. Thomson, Spray combustion characteristics and gaseous emissions of a wood derived fast pyrolysis liquid-ethanol blend in a pilot stabilized swirl burner, Energy Fuels, 24, 5331-5348 (2010). https://doi.org/10.1021/ef100670z
  21. J. A. Martin and A. A. Boateng, Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler, Fuel, 133, 34-44 (2014). https://doi.org/10.1016/j.fuel.2014.05.005
  22. S. K. Choi, Y. S. Choi, S. J. Kim, and Y. W. Jeong, Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner, Renew. Energy, 91, 516-523 (2016). https://doi.org/10.1016/j.renene.2016.01.066
  23. P. M. Gavin, PROGRAM DROP: A Computer Program for Prediction of Evaporation from Freely Falling Multicomponent Drops, SAND96-2878, Sandia National Laboratories (1996).
  24. W. E. Ranz and W. R. Marshall, Jr., Evaporation from Drops - Part I, Chem. Eng. Prog., 48, 141-146 (1952).
  25. W. E. Ranz and W. R. Marshall, Jr., Evaporation from Drops - Part II, Chem. Eng. Prog., 48, 173-180 (1952).
  26. C. K. Law, Combustion Physics, 214-217, Cambridge University Press, NY, USA (2006).

Cited by

  1. Catalytic Pyrolysis of Polyethylene and Polypropylene over Desilicated Beta and Al-MSU-F vol.8, pp.11, 2018, https://doi.org/10.3390/catal8110501