DOI QR코드

DOI QR Code

Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214)

선행 태풍의 해수 냉각에 의한 해수면 온도 경도가 후행 태풍의 진로에 미치는 영향: 볼라벤(1215)과 덴빈(1214)

  • Moon, Mincheol (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Choi, Yumi (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Ha, Kyung-Ja (Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University)
  • 문민철 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 최유미 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 하경자 (부산대학교 지구환경시스템학부 대기과학전공)
  • Received : 2016.08.12
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

The effects of sea surface temperature (SST) gradient induced by the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). It was observed that Typhoon Bolaven remarkably reduced SST by about $7^{\circ}C$ at Yellow Sea buoy (YSbuoy). Using the WRF experiments for the imposed cold wake over West of Tembin (WT) and over East of Tembin (ET), this study demonstrates that the effects of eastward SST gradient including cold wake over WT is much significant rather than that over ET in relation to unexpected Tembin's eastward deflection. This difference between two experiments is attributed to the fact that cold wake over WT increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ET and WT. Therefore, it implies that the enhanced eastward SST gradient over East Asia results in larger typhoon deflection toward the region of warmer SST according to the location of the cold wake effect. This result can contribute to the improvement of track prediction for typhoons influencing the Korean Peninsula

Keywords

References

  1. Brand, S., 1970: Interaction of binary tropical cyclones of the western north pacific ocean. J. Appl. Meteorol., 9, 433-441. https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2
  2. Carr, L. E., and R. L. Elsberry, 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific Basin. Mon. Wea. Rev., 126, 1734-1740. https://doi.org/10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2
  3. Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99-128. https://doi.org/10.1146/annurev.fluid.37.061903.175702
  4. Chan, J. C. L., and K. K. W. Cheung, 1998: Characteristics of the asymmetric circulation associated with tropical cyclone motion. Meteor. Atmos. Phys., 65, 183-196. https://doi.org/10.1007/BF01030787
  5. Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship been potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317-1336. https://doi.org/10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2
  6. Chang, S. W., 1983: A numerical study of the interaction between two tropical cyclones. Mon. Wea. Rev., 111, 1806-1817. https://doi.org/10.1175/1520-0493(1983)111<1806:ANSOTI>2.0.CO;2
  7. Chang, S. W., and R. V. Madala, 1980: Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. J. Atmos. Sci., 37, 2617-2630. https://doi.org/10.1175/1520-0469(1980)037<2617:NSOTIO>2.0.CO;2
  8. Choi, Y., K.-S. Yun, K.-J. Ha, K.-Y. Kim, S.-J. Yoon, and J. C. L. Chan, 2013: Effects of asymmetric SST distribution on straight-moving Typhoon Ewiniar (2006) and recurving Typhoon Maemi (2003). Mon. Wea. Rev., 141, 3950-3967. https://doi.org/10.1175/MWR-D-12-00207.1
  9. Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783-1796. https://doi.org/10.1175//2562.1
  10. Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 3798-3808. https://doi.org/10.1175/MWR-D-10-05019.1
  11. D'Asaro, E. A., and Coauthors, 2013: Impact of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc., 95, 1405-1418, doi:10.1175/BAMS-D-12-00104.1.
  12. Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. NCAR Tech. Note, 13 pp.
  13. Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990. https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2
  14. Fujiwara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287-293.
  15. Jeong, Y., I.-J. Moon, and S.-H. Kim, 2013: A study on upper ocean response to Typhoon Ewiniar (0603) and its impact. Atmosphere, 23, 1-16 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2013.23.1.001
  16. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In K. Emanuel et al. Eds., The Representation of Cumulus Convection in Numerical Models of the Atmosphere. American Meteorological Society, 165-170.
  17. Kim, C., H.-S. Lim, J. Jeong, J.-S. Shim, I.-J. Moon, Y. Oh, and H. You, 2014: Response of coastal waters in the Yellow sea to Typhoon Bolaven. J. Coastal. Res., 70, 278-283. https://doi.org/10.2112/SI70-047.1
  18. Lee, D., H. Kwon, S.-H. Won, and S. Park, 2006: Typhoon simulation with a parameterized sea surface cooling. Atmosphere, 16, 97-110 (in Korean with English abstract).
  19. Lee, J.-D., H.-B. Cheong, H.-G. Kang, and I.-H. Kwon, 2014: Tropical cyclone track and intensity forecast using asymmetric 3-dimensional bogus vortex. Atmosphere, 24, 207-223 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.2.207
  20. Lin, I., W. T. Liu, C.-C. Wu, G. T. F. Wong, C. Hu, Z. Chen, W.-D. Liang, Y. Yang, and K.-K. Liu, 2003:New evidence for enhanced primary production triggered by tropical cyclone. Geophys. Res. Lett., 30, doi:10.1029/2003GL017141.
  21. National typhoon center, 2011: Typhoon white book. NTCKMA, 342pp.
  22. National typhoon center, 2013: 2012 typhoon analysis report. NTC-KMA, 171-189.
  23. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
  24. Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, doi:10.1029/2007JC004393.
  25. Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005:Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi:10.1029/2005GL023716.
  26. Wang, Y., and G. J. Holland, 1996a: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53, 411-427. https://doi.org/10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2
  27. Wang, Y., and G. J. Holland, 1996b: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 3737-3756. https://doi.org/10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2
  28. Wang, Y., and G. J. Holland, 1996c: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313-3332. https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2
  29. Wang, Y., R. L. Elsberry, Y. Wang, and L. Wu, 1998:Dynamics in tropical cyclone motion: A review. Chinese J. Atmos. Sci., 22, 416-434.
  30. Wong, M. L. M., and J. C. L. Chan, 2006: Tropical cyclone motion in response to land surface friction. J. Atmos. Sci., 63, 1324-1337. https://doi.org/10.1175/JAS3683.1
  31. Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899-1911. https://doi.org/10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
  32. Yun, K.-S., J. C. L. Chan, and K.-J. Ha, 2012: Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmos. Res., 109, 36-51.

Cited by

  1. Effect of Typhoon-Generated Cold Wake on the Subsequent Typhoon Tembin and Its Sensitivity to Horizontal Resolutions vol.10, pp.11, 2019, https://doi.org/10.3390/atmos10110644