DOI QR코드

DOI QR Code

남극 장보고기지 주변 강풍사례 모의 연구

A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica

  • 권하택 (극지연구소 극지기후과학연구부) ;
  • 김신우 (극지연구소 북극해빙예측사업단) ;
  • 이솔지 (극지연구소 북극해빙예측사업단) ;
  • 박상종 (극지연구소 극지기후과학연구부) ;
  • 최태진 (극지연구소 극지기후과학연구부) ;
  • 정지훈 (전남대학교 해양학과) ;
  • 김성중 (극지연구소 극지기후과학연구부) ;
  • 김백민 (극지연구소 북극해빙예측사업단)
  • Kwon, Hataek (Division of Polar Climate Sciences, Korea Polar Research Institute) ;
  • Kim, Shin-Woo (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute) ;
  • Lee, Solji (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute) ;
  • Park, Sang-Jong (Division of Polar Climate Sciences, Korea Polar Research Institute) ;
  • Choi, Taejin (Division of Polar Climate Sciences, Korea Polar Research Institute) ;
  • Jeong, Jee-Hoon (Department of Oceanography, Chonnam National University) ;
  • Kim, Seong-Joong (Division of Polar Climate Sciences, Korea Polar Research Institute) ;
  • Kim, Baek-Min (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute)
  • 투고 : 2016.07.29
  • 심사 : 2016.10.13
  • 발행 : 2016.12.31

초록

Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

키워드

참고문헌

  1. Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009:Development and testing of polar weather research and forecasting model: 2. arctic ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.
  2. Bromwich, D. H., D. F. Steinhoff, I. Simmonds, K. Keay, and R. L. Fogt, 2011: Climatological aspects of cyclogenesis near Adelie Land Antarctica. Tellus, 63, 921-938. https://doi.org/10.1111/j.1600-0870.2011.00537.x
  3. Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting performance in the Antarctic. J. Geophys. Res., 118, 274-292, doi:10.1029/2012JD018139.
  4. Carrasco, J. F., D. H. Bromwich, and A. J. Monaghan, 2003: Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Wea. Rev., 131, 289-301. https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2
  5. Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
  6. Hong, S-.Y., J. Dudhia, and S.-H. Chen, 2003: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103-120.
  7. Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 4108-4129. https://doi.org/10.1175/JCLI3570.1
  8. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. https://doi.org/10.1029/2008JD009944
  9. IPCC, 2014: Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535pp.
  10. Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  11. Korea Polar Research Institute, 2012a: A planning for new operating program of the Jang Bogo Station, Antarctica, BSPE11260-222-7.
  12. Korea Polar Research Institute, 2012b: A survey study on the registration Jang Bogo Station as a GAW global station and its operation, BSPE10300.
  13. Kwon, H., S. J. Park, S. Lee, S. J. Kim, and B. M. Kim, 2016: A numerical simulation of blizzard caused by polar low at King Sejong station, Antarctica. Atmosphere, 26, 277-288 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2016.26.2.277
  14. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci., 24, 163-187.
  15. Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327-331. https://doi.org/10.1126/science.aaa0940
  16. Parish, T. R., 1984: A numerical study of strong katabatic winds over Antarctica. Mon. Wea. Rev., 112, 545-554. https://doi.org/10.1175/1520-0493(1984)112<0545:ANSOSK>2.0.CO;2
  17. Simmonds, I., K. Keay, and E.-P. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272-288. https://doi.org/10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2
  18. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Technical Note, NCAR/TN-468+STR, 88 pp.
  19. Speirs, J. C., H. A. McGowan, D. F. Steinhoff, and D. H. Bromwich, 2012: Regional climate variability driven by foehn winds in the McMurdo Dry Valleys, Antarctica. Int. J. Climatol., 33, 945-958, doi:10.1002/joc.3481.
  20. Steinhoff, D. F., D. H. Bromwich, M. Lambertson, S. L. Knuth, and M. A. Lazzara, 2008: A dynamical investigation of the May 2004 McMurdo, Antarctica, severe wind event using AMPS. Mon. Wea. Rev., 136, 7-26. https://doi.org/10.1175/2007MWR1999.1
  21. Steinhoff, D. F., D. H. Bromwich, and A. Monaghan, 2012: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 139, 1615-1631, doi:10.1002/qj.2038.