DOI QR코드

DOI QR Code

Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways

  • Bae, Hyemi (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Lee, Donghee (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Kim, Young-Won (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Choi, Jeongyoon (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Lee, Hong Jun (Biomedical Research Institute, College of Medicine, Chung-Ang University) ;
  • Kim, Sang-Wook (Department of Internal Medicine, College of Medicine, Chung-Ang University) ;
  • Kim, Taeho (Department of Internal Medicine, College of Medicine, Chung-Ang University) ;
  • Noh, Yun-Hee (Department of Biochemistry, School of Medicine, Konkuk University) ;
  • Ko, Jae-Hong (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Bang, Hyoweon (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Lim, Inja (Department of Physiology, College of Medicine, Chung-Ang University)
  • Received : 2016.03.08
  • Accepted : 2016.04.04
  • Published : 2016.05.01

Abstract

Human cardiac fibroblasts (HCFs) have various voltage-dependent $K^+$ channels (VDKCs) that can induce apoptosis. Hydrogen peroxide ($H_2O_2$) modulates VDKCs and induces oxidative stress, which is the main contributor to cardiac injury and cardiac remodeling. We investigated whether $H_2O_2$ could modulate VDKCs in HCFs and induce cell injury through this process. In whole-cell mode patch-clamp recordings, application of $H_2O_2$ stimulated $Ca^{2+}-activated$ $K^+$ ($K_{Ca}$) currents but not delayed rectifier $K^+$ or transient outward $K^+$ currents, all of which are VDKCs. $H_2O_2-stimulated$ $K_{Ca}$ currents were blocked by iberiotoxin (IbTX, a large conductance $K_{Ca}$ blocker). The $H_2O_2-stimulating$ effect on large-conductance $K_{Ca}$ ($BK_{Ca}$) currents was also blocked by KT5823 (a protein kinase G inhibitor) and 1 H-[1, 2, 4] oxadiazolo-[4, 3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor). In addition, 8-bromo-cyclic guanosine 3', 5'-monophosphate (8-Br-cGMP) stimulated $BK_{Ca}$ currents. In contrast, KT5720 and H-89 (protein kinase A inhibitors) did not block the $H_2O_2-stimulating$ effect on $BK_{Ca}$ currents. Using RT-PCR and western blot analysis, three subtypes of $K_{Ca}$ channels were detected in HCFs: $BK_{Ca}$ channels, small-conductance $K_{Ca}$ ($SK_{Ca}$) channels, and intermediate-conductance $K_{Ca}$ ($IK_{Ca}$) channels. In the annexin V/propidium iodide assay, apoptotic changes in HCFs increased in response to $H_2O_2$, but IbTX decreased $H_2O_2$-induced apoptosis. These data suggest that among the VDKCs of HCFs, $H_2O_2$ only enhances $BK_{Ca}$ currents through the protein kinase G pathway but not the protein kinase A pathway, and is involved in cell injury through $BK_{Ca}$ channels.

Keywords

References

  1. Dixon IM, Cunnington RH. Mast cells and cardiac fibroblasts: accomplices in elevation of collagen synthesis in modulation of fibroblast phenotype. Hypertension. 2011;58:142-144. https://doi.org/10.1161/HYPERTENSIONAHA.111.174748
  2. Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65:40-51. https://doi.org/10.1016/j.cardiores.2004.08.020
  3. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631-637. https://doi.org/10.1002/jcp.22322
  4. Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol. 2005;45:657-687. https://doi.org/10.1146/annurev.pharmtox.45.120403.095802
  5. Flack EC, Lindsey ML, Squires CE, Kaplan BS, Stroud RE, Clark LL, Escobar PG, Yarbrough WM, Spinale FG. Alterations in cultured myocardial fibroblast function following the development of left ventricular failure. J Mol Cell Cardiol. 2006;40:474-483. https://doi.org/10.1016/j.yjmcc.2006.01.019
  6. Kohl P, Camelliti P. Cardiac myocyte-nonmyocyte electrotonic coupling: implications for ventricular arrhythmogenesis. Heart Rhythm. 2007;4:233-235. https://doi.org/10.1016/j.hrthm.2006.10.014
  7. Kohl P, Camelliti P, Burton FL, Smith GL. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol. 2005;38(4 Suppl):45-50. https://doi.org/10.1016/j.jelectrocard.2005.06.096
  8. Li GR, Sun HY, Chen JB, Zhou Y, Tse HF, Lau CP. Characterization of multiple ion channels in cultured human cardiac fibroblasts. PLoS One. 2009;4:e7307. https://doi.org/10.1371/journal.pone.0007307
  9. Feng B, Ye WL, Ma LJ, Fang Y, Mei YA, Wei SM. Hydrogen peroxide enhanced $Ca^{2+}$-activated BK currents and promoted cell injury in human dermal fibroblasts. Life Sci. 2012;90:424-431. https://doi.org/10.1016/j.lfs.2011.12.020
  10. Jiao S, Wu MM, Hu CL, Zhang ZH, Mei YA. Melatonin receptor agonist 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via $K^+$ current inhibition. J Pineal Res. 2004;36:109-116. https://doi.org/10.1046/j.1600-079X.2003.00104.x
  11. Wu CT, Qi XY, Huang H, Naud P, Dawson K, Yeh YH, Harada M, Kuo CT, Nattel S. Disease and region-related cardiac fibroblast potassium current variations and potential functional significance. Cardiovasc Res. 2014;102:487-496. https://doi.org/10.1093/cvr/cvu055
  12. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science. 1997;278:114-117. https://doi.org/10.1126/science.278.5335.114
  13. Yue L, Xie J, Nattel S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 2011;89:744-753. https://doi.org/10.1093/cvr/cvq329
  14. Toro L, Wallner M, Meera P, Tanaka Y. $Maxi-K_{Ca}$, a unique member of the voltage-gated K channel superfamily. News Physiol Sci. 1998;13:112-117.
  15. Hoffman JF, Joiner W, Nehrke K, Potapova O, Foye K, Wickrema A. The hSK4 (KCNN4) isoform is the $Ca^{2+}$-activated $K^+$ channel (Gardos channel) in human red blood cells. Proc Natl Acad Sci U S A. 2003;100:7366-7371. https://doi.org/10.1073/pnas.1232342100
  16. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N. Functional and molecular identification of intermediate-conductance $Ca^{2+}$-activated $K^+$ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol. 2004;287:C125-134. https://doi.org/10.1152/ajpcell.00488.2003
  17. Sheng JZ, Braun AP. Small-and intermediate-conductance $Ca^{2+}$-activated $K^+$ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am J Physiol Cell Physiol. 2007;293:C458-467. https://doi.org/10.1152/ajpcell.00036.2007
  18. Mathie A, Wooltorton JR, Watkins CS. Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents. Gen Pharmacol. 1998;30:13-24. https://doi.org/10.1016/S0306-3623(97)00034-7
  19. Park WS, Firth AL, Han J, Ko EA. Patho-, physiological roles of voltage-dependent $K^+$ channels in pulmonary arterial smooth muscle cells. J Smooth Muscle Res. 2010;46:89-105. https://doi.org/10.1540/jsmr.46.89
  20. Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81:482-490.
  21. Angelova P, Muller W. Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons. Eur J Neurosci. 2006;23:2375-2384. https://doi.org/10.1111/j.1460-9568.2006.04767.x
  22. Dong DL, Yue P, Yang BF, Wang WH. Hydrogen peroxide stimulates the $Ca^{2+}$-activated big-conductance K channels (BK) through cGMP signaling pathway in cultured human endothelial cells. Cell Physiol Biochem. 2008;22:119-126. https://doi.org/10.1159/000149789
  23. Dong DL, Liu Y, Zhou YH, Song WH, Wang H, Yang BF. Decreases of voltage-dependent $K^+$ currents densities in ventricular myocytes of guinea pigs by chronic oxidant stress. Acta Pharmacol Sin. 2004;25:751-755.
  24. Huang SY, Lu YY, Chen YC, Chen WT, Lin YK, Chen SA, Chen YJ. Hydrogen peroxide modulates electrophysiological characteristics of left atrial myocytes. Acta Cardiol Sin. 2014;30:38-45.
  25. Wang YJ, Sung RJ, Lin MW, Wu SN. Contribution of $BK_{Ca}$-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol. 2006;213:175-185. https://doi.org/10.1007/s00232-007-0027-8
  26. Chilton L, Ohya S, Freed D, George E, Drobic V, Shibukawa Y, Maccannell KA, Imaizumi Y, Clark RB, Dixon IM, Giles WR. $K^+$ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am J Physiol Heart Circ Physiol. 2005;288:H2931-2939. https://doi.org/10.1152/ajpheart.01220.2004
  27. Brzezinska AK, Gebremedhin D, Chilian WM, Kalyanaraman B, Elliott SJ. Peroxynitrite reversibly inhibits $Ca^{2+}$-activated $K^+$ channels in rat cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol. 2000;278:H1883-1890. https://doi.org/10.1152/ajpheart.2000.278.6.H1883
  28. Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM. $H_2O_2$ activates redox-and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2007;292:H1404-1411. https://doi.org/10.1152/ajpheart.00696.2006
  29. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD. $H_2O_2$-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance $Ca^{2+}$-activated $K^+$ channel activation. Circ Res. 2012;110:471-480. https://doi.org/10.1161/CIRCRESAHA.111.258871
  30. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest. 2000;106:1521-1530. https://doi.org/10.1172/JCI10506
  31. Lim I, Yun J, Kim S, Lee C, Seo S, Kim T, Bang H. Nitric oxide stimulates a large-conductance Ca-activated $K^+$ channel in human skin fibroblasts through protein kinase G pathway. Skin Pharmacol Physiol. 2005;18:279-287. https://doi.org/10.1159/000088013
  32. Roh S, Choi S, Lim I. Involvement of protein kinase A in nitric oxide stimulating effect on a $BK_{Ca}$ channel of human dermal fibroblasts. J Invest Dermatol. 2007;127:2533-2538. https://doi.org/10.1038/sj.jid.5700907
  33. Park WS, Son YK, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Kang SH, Kim E, Earm YE, Han J. Direct modulation of $Ca^{2+}$-activated $K^+$ current by H-89 in rabbit coronary arterial smooth muscle cells. Vascul Pharmacol. 2007;46:105-113. https://doi.org/10.1016/j.vph.2006.08.413
  34. Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JX. Nitric oxide induces apoptosis by activating $K^+$ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2002;282:H184-193. https://doi.org/10.1152/ajpheart.2002.282.1.H184
  35. Ma YG, Dong L, Ye XL, Deng CL, Cheng JH, Liu WC, Ma J, Chang YM, Xie MJ. Activation of cloned $BK_{Ca}$ channels in nitric oxideinduced apoptosis of HEK293 cells. Apoptosis. 2010;15:426-438. https://doi.org/10.1007/s10495-009-0423-x
  36. Yun J, Park H, Ko JH, Lee W, Kim K, Kim T, Shin J, Kim K, Kim K, Song JH, Noh YH, Bang H, Lim I. Expression of $Ca^{2+}$-activated $K^+$ channels in human dermal fibroblasts and their roles in apoptosis. Skin Pharmacol Physiol. 2010;23:91-104. https://doi.org/10.1159/000265680
  37. Choi S, Lee W, Yun J, Seo J, Lim I. Expression of Ca-activated K channels and their role in proliferation of rat cardiac fibroblasts. Korean J Physiol Pharmacol. 2008;12:51-58. https://doi.org/10.4196/kjpp.2008.12.2.51
  38. Wang LP, Wang Y, Zhao LM, Li GR, Deng XL. Angiotensin II upregulates $K_{Ca}3.1 $ channels and stimulates cell proliferation in rat cardiac fibroblasts. Biochem Pharmacol. 2013;85:1486-1494. https://doi.org/10.1016/j.bcp.2013.02.032

Cited by

  1. Regulation of cardiac Ca2+ and ion channels by shear mechanotransduction vol.40, pp.7, 2017, https://doi.org/10.1007/s12272-017-0929-7
  2. Effects of Nitric Oxide on Voltage-Gated K + Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S -Nitrosylation vol.19, pp.3, 2016, https://doi.org/10.3390/ijms19030814
  3. Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms vol.25, pp.3, 2016, https://doi.org/10.4196/kjpp.2021.25.3.227