DOI QR코드

DOI QR Code

극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구

A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica

  • 권하택 (극지연구소 극지기후변화연구부) ;
  • 박상종 (극지연구소 극지기후변화연구부) ;
  • 이솔지 (극지연구소 극지기후변화연구부) ;
  • 김성중 (극지연구소 극지기후변화연구부) ;
  • 김백민 (극지연구소 극지기후변화연구부)
  • Kwon, Hataek (Division of Polar Climate Change, Korea Polar Research Institute) ;
  • Park, Sang-Jong (Division of Polar Climate Change, Korea Polar Research Institute) ;
  • Lee, Solji (Division of Polar Climate Change, Korea Polar Research Institute) ;
  • Kim, Seong-Joong (Division of Polar Climate Change, Korea Polar Research Institute) ;
  • Kim, Baek-Min (Division of Polar Climate Change, Korea Polar Research Institute)
  • 투고 : 2016.02.17
  • 심사 : 2016.03.28
  • 발행 : 2016.06.30

초록

Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

키워드

참고문헌

  1. American Meteorological Society, 2016: Blizzard, Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Blizzard].
  2. Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300.
  3. Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting performance in the Antarctic. J. Geophys. Res., 118, 274-292.
  4. Chen, F., K. E. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M. Ek, and A. Betts, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251-7268. https://doi.org/10.1029/95JD02165
  5. Deb, P., O. Andrew, H. Scott, P. Tony, T. John, B. Daniel, P. James, and C. Steve, 2016: An assessment of the Polar Weather Research and Forecast (WRF) model representation of near-surface meteorological variables over West Antarctica. J. Geophys. Res. Atmos., 121, 1532-1548. https://doi.org/10.1002/2015JD024037
  6. Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, doi:10.1029/2002GL015311.
  7. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2003: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103-120.
  8. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  9. Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
  10. Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 1749-1761. https://doi.org/10.1002/qj.888
  11. Lee, B. Y., D. H. Kim, and Y. Kim, 1990: A study on the climate characteristics over King Sejong Station. Korean J. Polar Res., 1, 47-57.
  12. Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Slovak Acad. Sci., 24, 163-187.
  13. Nam, J. C., and B. Y. Lee, 1991: A Case Study of Blizzard at King Sejong Station, Antarctica. Korean J. Atmos. Sci., 27, 291-300.
  14. Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 624 pp.
  15. Reed, R. J., and C. N. Duncan, 1987: Baroclinic instability as a mechanism for the serial development of polar lows: a case study. Tellus, 39A, 376-385. https://doi.org/10.1111/j.1600-0870.1987.tb00314.x
  16. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A Description of the Advanced Research WRF Version 2. NCAR Technical Note, NCAR/TN- 468+STR, 88pp.
  17. Turner, J., T. A. Lachlan-Cope, and J. P. Thomas, 1993: A Comparison of Arctic and Antarctic mesoscale vortices. J. Geophys. Res., 98, 13019-13034. https://doi.org/10.1029/92JD02426
  18. Zappa, G., L. Shaffrey, and K. Hodges, 2014: Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis. Mon. Wea. Rev., 142, 2596-2608. https://doi.org/10.1175/MWR-D-14-00064.1

피인용 문헌

  1. A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica vol.26, pp.4, 2016, https://doi.org/10.14191/Atmos.2016.26.4.617