DOI QR코드

DOI QR Code

Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants

대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석

  • Kim, Nae-Hyun (Department of Mechanical System Engineering, University of Incheon)
  • 김내현 (인천대학교 기계시스템공학과)
  • Received : 2016.03.15
  • Accepted : 2016.06.02
  • Published : 2016.06.30

Abstract

Enhanced tubes are used widely in the evaporators of large tonnage compression-type refrigerators. The evaporators consist of tube bundles, and the refrigerant properties are dependent on the locations in the tube bundles. In particular, the saturation temperatures of low pressure refrigerants (R-11, R-123) are strongly dependent on the locations due to the saturation temperature-pressure curve characteristics. Therefore, for the proper design of evaporators, local property predictions of the refrigerants are necessary. In this study, a computer program that simulates the flooded refrigerant evaporators was developed. The program incorporated theoretical models to predict the refrigerant shell-side boiling heat transfer coefficients and pressure drops across the tube bundle. The program adopted an incremental iterative procedure to perform row-by-row calculations over the specified incremental tube lengths for each water-side pass. The program was used to simulate the flooded refrigerant evaporator of the "T" company operating with R-123, which yielded satisfactory results. The program was extended to predict the performance of the flooded refrigerant evaporator operating with R-11, R-123, and R-134a. The effects of bundle aspect ratio are investigated.

대형 압축식 냉동기의 증발기 전열관으로는 그간 평활관이 주로 사용되어 왔으나 최근들어 비등 성능이 우수한 성형 가공관을 많이 사용하고 있다. 증발기는 관군으로 구성되고 따라서 증발기 내 위치에 따라 냉매 상태가 다르다. 특히 R-11, R-123과 같은 저압 냉매는 압력변화에 따른 포화온도 변화가 크므로 위치에 따라 포화온도가 다르게 된다. 따라서 증발기를 적절히 설계하려면 증발기 내 각 위치에서의 냉매의 상태를 적절히 예측하여야 한다. 본 연구에서는 대형 냉동기의 만액식 증발기를 모사할 수 있는 컴퓨터 프로그램을 개발하였다. 이 프로그램은 증발기를 미소 체적으로 구분하고 각 미소 체적에 적절한 관 내외측 열전달 및 압력손실 상관식을 적용하여 해석을 수행하였다. 본 프로그램을 R-123을 사용하는 T사의 만액식 증발기 해석에 적용한 결과 만족할 만한 결과를 얻었다. 이 프로그램을 이용하여 신 냉매인 R-123, R-134a를 사용하는 만액식 증발기의 해석을 수행하였고 특히 관군 세장비의 영향을 검토하였다.

Keywords

References

  1. Webb RL, Kim NH, Principles of Enhanced Heat Transfer, 2nd Ed., Taylor and Francis Pub., 2005.
  2. Thome JR, Enhanced Boiling Heat Transfer, Hemisphere Pub., 1990.
  3. J. W. Palen, C. C. Yang, "Circulation Boiling Model for Analysis of Kettle and Internal Reboiler Performance," in Heat Exchanger for Two-Phase Applications, ASME, HTD-Vol. 27, pp. 55-61, 1981.
  4. T. W. C. Brisbane, I. R. Grant, P. B. Whalley, "A Prediction Method for Kettle Reboiler Performance," ASME Paper 80-HT-42, 1980.
  5. G. T. Polley, T., Ralston, I. R. Grant, "Forced Cross Flow Boiling in an Ideal In-Line Tube Bundle," ASME Paper 80-HT-46, ASME/AIChE Heat Transfer Conference, Orlando, FL., 1980.
  6. R. L. Webb, K.-D. Choi, T. R. Apparao, "A Theoretical Model for Prediction of the Heat Load in Flooded Refrigerant Evaporators," ASHRAE Trans. Vol. 95, pt. 1, pp. 326-348, 1989.
  7. T. S. Ravigururajan, A. E. Bergles, "Development and Verification of General Correlations for Pressure Drop and Heat Transfer in Single-Phase Turbulent Flow in Enhanced Tubes," Exp. Thermal Fluid Sci., Vol. 13, pp. 55-70, 1996. DOI: http://dx.doi.org/10.1016/0894-1777(96)00014-3
  8. R. L. Webb, R. Narayanamurthy, P. Thors, "Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness," J. Heat Transfer, Vol. 122, pp. 134-142, 2000. DOI: http://dx.doi.org/10.1115/1.521444
  9. J. C. Chen, "A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow," ASME 63-HT-34, 6th National Heat Transfer Conference, Boston, 1963.
  10. K. Stephan, M. Abdelsalam, "Heat Transfer Correlations for Natural Convection Boiling," Int. J. Heat Mass Trans., Vol. 23, pp. 73-87, 1980. DOI: http://dx.doi.org/10.1016/0017-9310(80)90140-4
  11. M. G. Cooper, "Saturation Nucleate Pool Boiling - A Simple Correlation," International Chemical Engineering Symposium Series, No. 86, pp. 785-792. 1984. DOI: http://dx.doi.org/10.1016/b978-0-85295-175-0.50013-8
  12. R. L. Webb, C. Pais, "Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries," Int. J. Heat Mass Trans., Vol. 35, No. 8, pp. 1893-1904, 1992. DOI: http://dx.doi.org/10.1016/0017-9310(92)90192-U
  13. ESDU, "Convective heat transfer during cross flow of fluids over plain tube banks," Item No. 73031, Engineering Science Data Unit, London, 1973.
  14. L. Bennent, M. W. Davies, B. L. Hertzler, "The Suppression of Saturated Nucleate Boiling by Convective Flow," AIChE Symposium Series, Vol. 76, No. 199, pp. 91 -103, 1980.
  15. L. Bennet, J. C. Chen, "Forced Convective Boiling in Vertical Tubes for Saturated Pure Components and Binary Mixtures," AIChE J., Vol. 26, No. 3, pp. 454-461, 1980. DOI: http://dx.doi.org/10.1002/aic.690260317
  16. M. K. Jensen, J. T. Hsu, "A Parametric Study of Boiling Heat Transfer in a Tube Bundle," Proceedings of the 1987 ASME-JSME Thermal Engineeing Joint Conference, Vol. 3, pp. 133-140, 1987.
  17. D. S. Schrage, J. T. Hsu, M. K. Jensen, "Void Fractions and Two Phase Multipliers in a Horizontal Tube Bundle," AIChE Symposium Series Vol. 83, No. 257, pp. 1-8, 1987.
  18. K. Ishihara, J. W. Palen, J. Taborek, "Critical Review of Correlations for Predicting Two-Phase Flow Pressure Drop Across Tube Banks," Heat Transfer Engineering, Vol. 1, No. 3, pp. 23-32, 1980. DOI: http://dx.doi.org/10.1080/01457638008939560
  19. P. Payvar, "Analysis of Performance of Full Bundle Submerged Boilers," in Two-Phase Heat Exchanger Symposium, HTD-Vol. 44, pp. 11-18, 1985.