DOI QR코드

DOI QR Code

Cause Analysis in Decrease of Body Stability According to The Induced Astigmatic Blur

유발된 난시성 흐림에 의한 신체 안정성 감소의 원인분석

  • Received : 2016.07.31
  • Accepted : 2016.08.29
  • Published : 2016.09.30

Abstract

Purpose: To establish the cause of decrease in body stability and to analyze the effects on sensory organs maintaining static balance according to the induced astigmatic blur. Methods: Twenty subjects (10 males, 10 females; mean age, $23.40{\pm}2.70years$) were participated in this study. To induce myopic simple astigmatism, the axis directions of cylindrical lenses were placed $180^{\circ}$ on both eyes (with-the-rule), $90^{\circ}$ on both eyes (against-the-rule), and $45^{\circ}$ on both eyes (oblique). Cylindrical lenses of +0.50, +1.00, +1.50, +2.00, +3.00, +4.00, and +5.00 D were used to increase astigmatic blur in each astigmatism types. General stability (ST) and sway power (SP) in frequencies by each sensory organs were analyzed using the TETRAX biofeedback system. Results: ST in the all astigmatism types were raised with increase of astigmatic blur compared to full corrected condition, but a significant difference only showed in the induced oblique astigmatism. According to the results of correlation analysis between ST and SP in the each frequencies with increase of astigmatic blur, the causes of increased ST in the induced oblique astigmatism showed to have a high correlation in order of somatosensory system (high-medium frequency), central nervous system (high frequency), peripheral vestibular system (low-medium frequency), and visual system (low frequency). Conclusions: The visual information by uncorrected oblique astigmatism may disturb the normal functions of all sensory organs maintaining body balance, consequently, the body stability can be reduced. Therefore, optimal correction of astigmatism can play an important role for reducing the instability of body balance.

목적: 유발된 난시성 흐림이 정적균형을 유지시키는 다른 감각기관들에 미치는 영향을 분석하여 신체 안정성을 감소시키는 원인을 규명하고자 하였다. 방법: 평균 나이 $23.40{\pm}2.70$세의 20명을 대상으로 하였다. 근시성 단성난시를 유발하기 위해 (+)원주렌즈의 축을 양안에 $180^{\circ}$(직난시), $90^{\circ}$(도난시), 그리고 $45^{\circ}$(사난시) 방향으로 위치시켰으며, 각각의 방향에 +0.50 D, +1.00 D, +1.50 D, +2.00 D, +3.00 D, +4.00 D, 그리고 +5.00 D의 원주렌즈를 이용해 각 난시유형별로 난시성 흐림을 증가시켰다. TETRAX biofeedback system을 이용하여 각 조건에 따른 안정성 지수(ST)와 각 감각기관에 해당하는 4가지 주파수의 흔들림 강도(SP)를 측정하였다. 결과: 난시성 흐림이 커질수록 유발된 모든 난시유형에서 ST는 완전교정상태와 비교해 증가하였지만, 유발된 사난시에서만 유의한 차이를 보였다. 난시성 흐림이 증가함에 따른 ST의 증가와 각 주파수별 SP간의 상관분석결과, 유발된 사난시에서 신체 안정성을 저하시키는 원인으로 체성계(중 고주파수), 중추신경계(고주파수), 말초전정계(중 저주파수), 그리고 시각계(저주파수)의 영향 순으로 높은 상관성을 보였다. 결론: 미교정된 사난시로 인한 시각정보는 신체균형을 유지시키는 모든 감각기관의 정상적인 기능을 방해하여 신체 안정성을 감소시킬 수 있다. 따라서 최적의 난시교정은 신체균형의 불안정성을 제거시키는 중요한 요인이 될 수 있다.

Keywords

References

  1. Shumway-Cook A, Anson D, Haller S. Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients. Arch Phys Med Rehabil. 1988;69(6):395-400.
  2. Ragnarsdottir M. The concept of balance. Phys Ther. 1996;82(6):368-375.
  3. Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin. 2008;38(6):467-478. https://doi.org/10.1016/j.neucli.2008.09.001
  4. Yelnik A, Bonan I. Clinical tools for assessing balance disorders. Neurophysiol Clin. 2008;38(6):439-445. https://doi.org/10.1016/j.neucli.2008.09.008
  5. Chang WH. Common disorders causing balance problems. Brain Neurorehabil. 2013;6(2):54-57. https://doi.org/10.12786/bn.2013.6.2.54
  6. Lord SR. Visual risk factors for falls in older people. Age Ageing. 2006;35(2):ii42-ii45. https://doi.org/10.1093/ageing/afj019
  7. Paulus WM, Straube A, Brandt T. Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain. 1984;107(Pt 4):1143-1163. https://doi.org/10.1093/brain/107.4.1143
  8. Kim SY, Moon BY, and Cho HG. Changes of body balance on static posture according to types of induced ametropia. J Korean Ophthalmic Opt Soc. 2014;19(2):239-246. https://doi.org/10.14479/jkoos.2014.19.2.239
  9. Kim SY, Moon BY, Cho HG. Body balance under ametropic conditions induced by spherical lenses in an upright position. J Phys Ther Sci. 2015;27(3):615-618. https://doi.org/10.1589/jpts.27.615
  10. Park CS, Kang KY. Effect of visual biofeedback simulation training for balance in patients with incomplete spinal cord injury. J of Contents Association. 2011;11(11):194-203.
  11. Chang KY, Woo HS. Influence of fall-preventive occupational therapy applied to elderly in the community upon balance ability. J of Contents Association. 2010;10(3):232-240.
  12. Sunlight. TETRAX: FOURIER TRANSFORMATION OF POSTURAL SWAY, 1995. http://www.sunlightnet.com/international/html/FourierTransformation.pdf(7 July 2016).
  13. Johnson L, Supuk E, Buckley JG, Elliott DB. Effects of induced astigmatism on foot placement strategies when stepping onto a raised surface. PLoS One. 2013;8(5):e63351. https://doi.org/10.1371/journal.pone.0063351
  14. Andrew K, Caroline C. Clinical optics and refraction: a guide for optometrists, contact lens opticians and dispensing opticians, 1st Ed. New York: Elsevier Health Sciences, 2007;59.
  15. Adams WJ, Banks MS, van Ee R. Adaptation to three-dimensional distortions in human vision. Nat Neurosci. 2001;4(11):1063-1064. https://doi.org/10.1038/nn729
  16. Chapman GJ, Scally AJ, Elliott DB. Adaptive gait changes in older people due to lens magnification. Ophthalmic Physiol Opt. 2011;31(3):311-317. https://doi.org/10.1111/j.1475-1313.2010.00807.x
  17. Cho YJ. Diagnostic approach to the dizzy patient. Inje Medical Journal. 2002;23(4):245-251.
  18. Fitzpatrick R, McCloskey DI. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol. 1994;478(Pt 1):173-186. https://doi.org/10.1113/jphysiol.1994.sp020240
  19. Lord SR, Sherrington C, Menz HB. Falls in older people: risk factors and strategies for prevention, 1st Ed. Cambridge, UK: Cambridge University press, 2001.
  20. Anand V, Buckley J, Scally A, Elliott DB. The effect of refractive blur on postural stability. Ophthalmic Physiol Opt. 2002;22(6):528-534. https://doi.org/10.1046/j.1475-1313.2002.00067.x
  21. Jack CI, Smith T, Neoh C, Lye M, McGalliard JN. Prevalence of low vision in elderly patients admitted to an acute geriatric unit in Liverpool: elderly people who fall are more likely to have low vision. Gerontology. 1995;41(5):280-285. https://doi.org/10.1159/000213695

Cited by

  1. Effects of Induced Refractive Errors on Gait Patterns vol.23, pp.3, 2018, https://doi.org/10.14479/jkoos.2018.23.3.259
  2. Changes in Postural Stability with the Direction and Speed of Smooth-Pursuit Eye Movements vol.24, pp.2, 2016, https://doi.org/10.14479/jkoos.2019.24.2.153
  3. Hyaluronic Acid-Pluronic®F127-Laden Soft Contact Lenses for Corneal Epithelial Healing: In Vitro and In Vivo Studies vol.21, pp.5, 2016, https://doi.org/10.1208/s12249-020-01714-z
  4. Changes in Postural Stability After Wearing Full-Corrected New Glasses vol.25, pp.3, 2020, https://doi.org/10.14479/jkoos.2020.25.3.291