High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment

대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구

  • Jeong, Byung-Jun (Dept. of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Jeong, Jun-Kyo (Dept. of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Park, Jung-Hyun (Dept. of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Kim, Yu-Jung (Dept. of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Dept. of Electronics Engineering, Chungnam National University) ;
  • Choi, Ho-Suk (Dept. of Chemical Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Dept. of Electronics Engineering, Chungnam National University)
  • 정병준 (충남대학교 전자전파정보통신공학과) ;
  • 정준교 (충남대학교 전자전파정보통신공학과) ;
  • 박정현 (충남대학교 전자전파정보통신공학과) ;
  • 김유정 (충남대학교 전자전파정보통신공학과) ;
  • 이희덕 (충남대학교 전자공학과) ;
  • 최호석 (충남대학교 응용화학공학과) ;
  • 이가원 (충남대학교 전자공학과)
  • Received : 2017.11.29
  • Accepted : 2017.12.22
  • Published : 2017.12.31

Abstract

In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

Keywords

References

  1. E Fortunato, P Barquinha, R Martins., "Oxide semiconductor thin-film transistors: a review of recent advances," Advanced materials, 24.22: 2945-2986. (2012). https://doi.org/10.1002/adma.201103228
  2. Park, J. S., Kim, H., & Kim, I. D.. Overview of electroceramic materials for oxide semiconductor thin film transistors. Journal of Electroceramics, 32(2-3), 117-140, (2014). https://doi.org/10.1007/s10832-013-9858-0
  3. Kim, M., Sun, W., Kang, J., & Shin, H. The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT. Semiconductor Science and Technology, (2017).
  4. S.H. Chen, H.C. Liu, and C.Y. Lee, J.Y. Gan, H.W. Zan, and J.C. Hwang a, Y.Y. Cheng c, P.C. Lyu, "High performance electric-double-layer amorphous IGZO thin-film transistors gated with hydrated bovine serum albumin protein" Organic Electronics, 24, 200-204. (2015). https://doi.org/10.1016/j.orgel.2015.05.046
  5. J.H. Kang, E.N. Cho, C.E. Kim, and M.J. Lee, S.J. Lee, J.M. Myoung "Mobility enhancement in amorphous InGaZnO thin-film transistors by Ar plasma treatment" Appl Phys Lett, 102 : 222103, (2013). https://doi.org/10.1063/1.4809727
  6. Cho, S. H., Choi, M. J., Chung, K. B., & Park, J. S.. Low temperature processed InGaZnO oxide thin film transistor using ultra-violet irradiation. Electronic Materials Letters, 11(3), 360-365, (2015). https://doi.org/10.1007/s13391-015-4442-1
  7. Hwang, Y. H., An, H. M., & Cho, W. J. Performance improvement of the resistive memory properties of InGaZnO thin films by using microwave irradiation. Japanese Journal of Applied Physics, 53(4S), 04EJ04. (2014). https://doi.org/10.7567/JJAP.53.04EJ04
  8. Dao, V. D., Tran, C. Q., Ko, S. H., & Choi, H. S. Dry plasma reduction to synthesize supported platinum nanoparticles for flexible dye-sensitized solar cells. Journal of Materials Chemistry A, 1(14), 4436-4443, (2013). https://doi.org/10.1039/c3ta10319f
  9. Trinh, T. T., Nguyen, V. D., Ryu, K., Jang, K., Lee, W., Baek, S., Raja. J., Yi, J. "Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer." Semiconductor Science and Technology, 26(8), 085012, (2011). https://doi.org/10.1088/0268-1242/26/8/085012
  10. Xiao-Ming, H., Chen-Fei, W., Hai, L., Fang-Fang, R., Hong-Bo, Z., & Yong-Jin, W. "The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs". Chinese Physics Letters, 32(7), 077303, (2015). https://doi.org/10.1088/0256-307X/32/7/077303
  11. Jie, W., Junfei, S., Chengyuan, D., Zhongfei, Z., Yuting, C., Daxiang. Zhe.H., Runze.Z. "Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors." Journal of Semiconductors, 35(1), 014003, (2014). https://doi.org/10.1088/1674-4926/35/1/014003
  12. Tak, Y. J., Yoon, D. H., Yoon, S., Choi, U. H., Sabri, M. M., Ahn, B. D. and Kim, H. J. (2014). "Enhanced Electrical Characteristics and Stability Via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In-Ga-Zn-O Thin-Film Transistors," ACS Appl. Mater. Interfaces, vol. 6, pp. 6399-6405, (2014). https://doi.org/10.1021/am405818x
  13. Liu, P., Chen, T. P., Li, X. D., Liu, Z., Wong, J. I., Liu, Y. and Leong, K. C. (2013). "Effect of exposure to ultraviolet-activated oxygen on the electrical characteristics of amorphous indium gallium zinc oxide thin film transistors," ECS Solid State Lett., vol. 2, pp. Q21-Q24, (2013). https://doi.org/10.1149/2.005304ssl
  14. Trinh, T. T., Nguyen, V. D., Ryu, K., Jang, K., Lee, W., Baek, S., Raja.J., & Yi, J. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer. Semiconductor Science and Technology, 26(8), 085012, (2011). https://doi.org/10.1088/0268-1242/26/8/085012