DOI QR코드

DOI QR Code

Biomass-based Carbon Materials for Energy Storage and Environmental Applications

에너지 저장 및 환경 분야에 응용되는 바이오매스 기반 활성탄

  • Balathanigaimani, M.S. (Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology) ;
  • Shim, Wang Geun (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Sang Chai (Department of Environmental Education, Mokpo National University)
  • ;
  • 심왕근 (순천대학교 고분자공학과) ;
  • 김상채 (목포대학교 환경교육과)
  • Received : 2016.11.18
  • Accepted : 2016.12.20
  • Published : 2017.02.10

Abstract

The importance of the biomass-based activated carbon as an adsorbent has been reviewed with emphasizing on the application in the fields of energy storage and environmental related problems. It is clear from the literature survey that beside surface area and pore volume, surface chemistry also plays important role in determining their usage in various field. The capacities of biomass-based activated carbon can be increased depending upon the choice of the biomass used and the pathway taken for their activation and hence they can be tailored for various applications. Accordingly, this review summarizes the role of biomass based activated carbon in different applications.

에너지 저장 및 환경 관련 분야에 응용 흡착매질로 바이오매스 기반 활성탄의 중요성을 살펴보았다. 지금까지 발표된 연구 결과는 바이오매스 기반 활성탄의 표면적과 기공부피 이외에 이들의 표면 화학 특성 또한 다양한 분야에 응용될 수 있는 중요한 역할이 있음이 확인된다. 바이오매스 기반 활성탄의 용량은 바이오매스의 특성 및 이들의 활성화 공정에 따라 달라지므로 다양한 응용 분야에 맞게 제조할 수 있다. 따라서 본 리뷰에서는 다양한 분야에 이용되고 있는 바이오매스 기반 활성탄의 역할을 정리하였다.

Keywords

References

  1. E. Fitzer, K. H. Kochling, H. P. Boehm, and H. Marsh, Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995), Pure Appl. Chem., 67, 473-506 (1995). https://doi.org/10.1351/pac199567030473
  2. T. Zhang, W. P. Walawender, L. T. Fan, M. Fan, D. Daugaard, and R. C. Brown, Preparation of activated carbon from forest and agricultural residues through $CO_2$ activation, Chem. Eng. J., 105, 53-59 (2004). https://doi.org/10.1016/j.cej.2004.06.011
  3. H. Teng and H. C. Lin, Activated carbon production from low ash subbituminous coal with $CO_2$ activation, AIChE J., 44, 1170-1177 (1998). https://doi.org/10.1002/aic.690440514
  4. D. Lozano-Castello, M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: I. Activation by KOH, Carbon, 39, 741-749 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8
  5. K. Nakagawa, S. R. Mukai, T. Suzuki, and H. Tamon, Gas adsorption on activated carbons from PET mixtures with a metal salt, Carbon, 41, 823-831 (2003). https://doi.org/10.1016/S0008-6223(02)00404-9
  6. R. L. Tseng and S. K. Tseng, Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption, J. Hazard. Mater., B136, 671-680 (2006).
  7. C. F. Chang, C. Y. Chang, and W. T. Tsai, Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by $CO_2$ and steam, J. Colloid Interface Sci., 232, 45-49 (2000). https://doi.org/10.1006/jcis.2000.7171
  8. H. Demiral, I. Demiral, F. Tumsek, and B. Karabacakoglu, Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation, Surf. Interface Anal., 40, 616-619 (2008). https://doi.org/10.1002/sia.2631
  9. R. C. Bansal, J. B. Donnet, and F. F. Stoeckli, Active Carbon, 67-89, Marcel Dekker, New York, NY, USA (1988).
  10. H. Jankowska, A. Switakowski, and J. Choma, Active Carbon, 13-74, Ellis Horwood, New York, NY, USA (1991).
  11. M. Molaina-Sabio, F. Rodriquez-Reinoso, F. Caturla, and M. J. Selles, Porosity in granular carbons activated with phosphoric acid, Carbon, 33, 1105-1113 (1995). https://doi.org/10.1016/0008-6223(95)00059-M
  12. A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34, 471-479 (1996). https://doi.org/10.1016/0008-6223(95)00204-9
  13. M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism, Carbon, 41, 267-275 (2003). https://doi.org/10.1016/S0008-6223(02)00279-8
  14. F. Rodriquez-Reinoso and M. Molaina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview, Carbon, 30, 1111-1118 (1992). https://doi.org/10.1016/0008-6223(92)90143-K
  15. R. A. Hutchins, Development of design parameters, In: J. R. Perrich (eds.). Activated Carbon Adsorption for Wastewater Treatment, 29-37, CRC Press, Boca Raton, FL, USA (1981).
  16. M. Kruk, M. Jaroniec, and J. Choma, Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons, Carbon, 36, 1447-1458 (1998). https://doi.org/10.1016/S0008-6223(98)00137-7
  17. M. Kruk, M. Jaroniec, and K. P. Gadkaree, Nitrogen adsorption studies of novel synthetic active carbons, J. Colloid Interface Sci., 192, 250-256 (1997). https://doi.org/10.1006/jcis.1997.5009
  18. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 5-156, Kluwer academic publishers, The Netherlands (2004).
  19. V. Menon and S. J. Komarneni, Porous adsorbents for vehicular natural gas storage: A review, J. Porous Mater., 5, 43-58 (1998). https://doi.org/10.1023/A:1009673830619
  20. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, and D. F. Quinn, Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size, Carbon, 40, 989-1002 (2002). https://doi.org/10.1016/S0008-6223(01)00235-4
  21. M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, Hydrogen storage using physisorption-materials demands, Appl. Phys. A, 72, 619-623 (2001). https://doi.org/10.1007/s003390100847
  22. H. Jin, Y. S. Lee, and I. Hong, Hydrogen adsorption characteristics of activated carbon, Catal. Today, 120, 399-406 (2007). https://doi.org/10.1016/j.cattod.2006.09.012
  23. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors Carbon, 39, 937-950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4
  24. M. J. Bleda-Martinez, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, and A. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials, Carbon, 44, 2642-2651 (2006). https://doi.org/10.1016/j.carbon.2006.04.017
  25. J. H. Yun and D. K. Choi, Adsorption isotherms of benzene and methylbenzene vapors on activated carbon, J. Chem. Eng. Data, 42, 894-896 (1997). https://doi.org/10.1021/je970066i
  26. W. G. Shim, J. W. Lee, and H. Moon, Adsorption of carbon tetrachloride and chloroform on activated carbon at (300.15, 310.15, 320.15 and 330.15) K, J. Chem. Eng. Data, 48, 286-290 (2003). https://doi.org/10.1021/je020109h
  27. A. Dabrowski, P. Podkoscielny, Z. Hubicki, and M. Barczak, Adsorption of phenolic compounds by activated carbon-A critical review, Chemosphere, 58, 1049-1070 (2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  28. C. Hung-Lung, L. Kuo-Hsiung, C. Shih-Yu, C. Ching-Guan, and P. San-De, Dye adsorption on biosolid adsorbents and commercially activated carbon, Dyes Pigm., 75, 52-59 (2007). https://doi.org/10.1016/j.dyepig.2006.05.017
  29. S. Ismadji and S. K. Bhatia, Characterization of activated carbons using liquid phase adsorption, Carbon, 39, 1237-1250 (2001). https://doi.org/10.1016/S0008-6223(00)00252-9
  30. A. Amaya, N. Medero, N. Tancredi, H. Silva, and C. Deiana, Activated carbon briquettes from biomass materials, Bioresour. Technol., 98, 1635-1641 (2007). https://doi.org/10.1016/j.biortech.2006.05.049
  31. S. Wang and Z. H. Zhu, Effects of acidic treatment of activated carbons on dye adsorption, Dyes Pigm., 75, 306-314 (2007). https://doi.org/10.1016/j.dyepig.2006.06.005
  32. O. Ioannidou and A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew Sustain. Energy Rev., 11, 1966-2005 (2007). https://doi.org/10.1016/j.rser.2006.03.013
  33. R. M. Suzuki, A. D. Andrade, J. C. Sousa, and M. C. Rollemberg, Preparation and characterization of activated carbon from rice bran. Bioresour. Technol., 98, 1985-1991 (2007). https://doi.org/10.1016/j.biortech.2006.08.001
  34. S. Biloe, V. Goetz, and S. Mauran, Characterization of adsorbent composite blocks for methane storage, Carbon, 39, 1653-1662 (2001). https://doi.org/10.1016/S0008-6223(00)00288-8
  35. A. Perrin, A. Celzard, A. Albiniak, M. Jasienko-Halat, J. F. Mareche, and G. Furdin, NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability, Microporous Mesoporous Mater., 81, 31-40 (2005). https://doi.org/10.1016/j.micromeso.2005.01.015
  36. R. Basumatary, P. Dutta, B. Prasad, and K. Srinivasan, Thermal modeling of activated carbon based adsorptive natural gas storage system, Carbon, 43, 541-549 (2005). https://doi.org/10.1016/j.carbon.2004.10.016
  37. T. D. Burchell, Carbon Materials for Advanced Technologies, Pergamon press, Oxford, UK (1999).
  38. D. Lozano-Castello, J. Alcaniz-Monge, M. A, de la Casa-Lillo, D. Cazorla-Amoros, and A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, Fuel, 81, 1777-1803 (2002). https://doi.org/10.1016/S0016-2361(02)00124-2
  39. D. F. Quinn and J. A. MacDonald, Natural gas storage, Carbon, 30, 1097-1103 (1992). https://doi.org/10.1016/0008-6223(92)90141-I
  40. K. R. Matranga, A. L. Myers, and E. D. Glanndt, Storage of natural gas by adsorption on activated carbon Chem. Eng. Sci., 47, 1569-1579 (1992). https://doi.org/10.1016/0009-2509(92)85005-V
  41. C. D. Wood, B. Tan, A. Trewin, F. Su, M J. Rosseinsky, D. Bradshaw, Y. Sun, L. Zhou, and A. I. Cooper, Microporous organic polymers for methane storage, Adv. Mater., 20, 1916-1921 (2008). https://doi.org/10.1002/adma.200702397
  42. R. E. Morris and P. S. Wheatley, Gas storage in nanoporous materials, Angew. Chem. Int. Ed., 47, 4966-4981 (2008). https://doi.org/10.1002/anie.200703934
  43. US DOE's MOVE Program: https://arpa-e.energy.gov/.
  44. R. F. Serveice, Stepping on the gas, Science, 346, 538-541 (2014). https://doi.org/10.1126/science.346.6209.538
  45. J. P. B. Mota, Impact of gas composition on natural gas storage by adsorption, AIChE J., 45, 986-996 (1999). https://doi.org/10.1002/aic.690450509
  46. M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, J. W. Lee, and H. Moon, Preparation of powdered activated carbon from rice husk and its methane adsorption properties, Korean J. Chem. Eng., 23, 663-668 (2006). https://doi.org/10.1007/BF02706811
  47. M. S. Balathanigaimani, M. J. Lee, W. G. Shim, J. W. Lee, and H. Moon, Charge and discharge of methane on phenol-based carbon monolith, Adsorption, 14, 525-532 (2008). https://doi.org/10.1007/s10450-008-9131-z
  48. M. S. Balathanigaimani, W. G. Shim, J. W. Lee, and H. Moon, Adsorption of methane on novel corn grain-based carbon monoliths Microporous Mesoporous Mater., 119, 47-52 (2009). https://doi.org/10.1016/j.micromeso.2008.09.034
  49. N. Bagheri and J. Abedi, Adsorption of methane on corn cobs based activated carbon, Chem. Eng. Res. Des., 89, 2038-2043 (2011). https://doi.org/10.1016/j.cherd.2011.02.002
  50. R. B. Rios, F. W. M. Silva, A. E. B. Torres, D. C. S. Azevedo, and C. L. Cavalcante, Adsorption of methane in activated carbons obtained from coconut shells using $H_3PO_4$ chemical activation, Adsorption, 15, 271-277 (2009). https://doi.org/10.1007/s10450-009-9174-9
  51. T. Zhang, W. P. Walawender, and L. T. Fan, Grain-based activated carbons for natural gas storage, Bioresour. Technol., 101, 1983-1991 (2010). https://doi.org/10.1016/j.biortech.2009.10.046
  52. J. W. Lee, M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, and H. Moon, Methane storage on phenol-based activated carbons at (293.15, 303.15, and 313.15) K, J. Chem. Eng. Data, 52, 66-70 (2007). https://doi.org/10.1021/je060218m
  53. K. Inomata, K. Kanazawa, Y. Urabe, H. Ozono, and T. Araki, Natural gas storage in activated carbon pellets without a binder, Carbon, 40, 87-93 (2002). https://doi.org/10.1016/S0008-6223(01)00084-7
  54. F. O. Erdogan and T. Kopac, Dynamic analysis of sorption of hydrogen in activated carbon, Int. J. Hydrogen Energy, 32, 3448-3456 (2007). https://doi.org/10.1016/j.ijhydene.2007.02.009
  55. W. C. Annemieke, V. D. Berg, and C. O. Arean, Materials for hydrogen storage: current research trends and perspectives, Chem. Commun., 6, 668-681 (2008).
  56. L. L. Vasiliev, L. E. Kanonchik, A. G. Kulakov, D. A. Mishkins, A. M. Safonova, and N. K. Luneva, New sorbent materials for the hydrogen storage and transportation, Int. J. Hydrogen Energy, 32, 5015-5025 (2007). https://doi.org/10.1016/j.ijhydene.2007.07.029
  57. G. D. Berry and S. M. Aceves, Onboard storage alternatives for hydrogen vehicles, Energy Fuels, 12, 49-55 (1998). https://doi.org/10.1021/ef9700947
  58. L. Schlapbach and A. Zuttel, A. Hydrogen-storage materials for mobile applications, Nature, 414, 353-358 (2001). https://doi.org/10.1038/35104634
  59. M. Felderhoff, C. Weidenthaler, R. V. Helmolt, and U. Eberle, Hydrogen storage: the remaining scientific and technological challenges, Phys. Chem. Chem. Phys., 9, 2643-2653 (2007). https://doi.org/10.1039/b701563c
  60. M. Jorada-Beneyto, F. Suarez-Garcia, D. Lozano-Castello, D. Cazorla-Amoros, and A. Linares-Solano, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures, Carbon, 45, 293-303 (2007). https://doi.org/10.1016/j.carbon.2006.09.022
  61. E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. K. Bose, and S. Desilets, Storage of hydrogen on single-walled carbon nanotubes and other carbon structures, Appl. Phys. A, 78, 961-967 (2004).
  62. K. Mark Thomas, Hydrogen adsorption and storage on porous materials, Catal. Today, 120, 389-398 (2007). https://doi.org/10.1016/j.cattod.2006.09.015
  63. B. Buczek, L. Czepirski, and J. Zietkiewicz, Improvement of hydrogen storage capacity for active carbon, Adsorption, 11, 877-880 (2005). https://doi.org/10.1007/s10450-005-6039-8
  64. L. Zubizarreta, E. I. Gomez, A. Arenillas, C. O. Ania, J. B. Parra, and J. J. Pis, $H_2$ storage in carbon materials, Adsorption, 14, 557-566 (2008). https://doi.org/10.1007/s10450-008-9116-y
  65. M. Jorada-Beneyto, D. Lozano-Castello, F. Suarez-Garcia, D. Cazorla-Amoros, and A. Linares-Solano, Advanced activated carbon monoliths and activated carbons for hydrogen storage, Microporous Mesoporous Mater., 112, 235-242 (2008). https://doi.org/10.1016/j.micromeso.2007.09.034
  66. L. Zhou, Y. Zhou, and Y. Sun, Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy, 29, 319-322 (2004). https://doi.org/10.1016/S0360-3199(03)00155-1
  67. K. Babel and K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption, Carbon, 46, 1948-1956 (2008). https://doi.org/10.1016/j.carbon.2008.08.005
  68. M. Sevilla, A. B. Fuertesa, and R. Mokaya, High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci., 4, 1400-1410 (2011). https://doi.org/10.1039/c0ee00347f
  69. T. H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J., 158, 129-142 (2010). https://doi.org/10.1016/j.cej.2009.12.016
  70. Z. Yang, Y. Xia, and R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials, J. Am. Chem. Soc., 129, 1673-1679 (2007). https://doi.org/10.1021/ja067149g
  71. J. Wang, I. Senkovska, S. Kaskel, and Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage, Carbon, 75, 372-380 (2014). https://doi.org/10.1016/j.carbon.2014.04.016
  72. R. Yang, G. Liu, M. Li, J. Zhang, and X. Hao, Preparation and $N_2,\;CO_2\;and\;H_2$ adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem, Microporous Mesoporous Mater., 158, 108-116 (2012). https://doi.org/10.1016/j.micromeso.2012.03.004
  73. H. Wang, Q. Gao, and J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon, J. Am. Chem. Soc., 131, 7016-7022 (2009). https://doi.org/10.1021/ja8083225
  74. V. Fierro, A. Szczurek, C. Zlotea, J. F. Mareche, M. T. Izquierdo, A. Albiniak, M. Latroche, G. Furdin, and A. Celzard, Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons, Carbon, 48, 1902-1911 (2010). https://doi.org/10.1016/j.carbon.2010.01.052
  75. N. Bader and A. Ouederni, Optimization of biomass-based carbon materials for hydrogen storage, J. Energy Storage, 5, 77-84 (2016). https://doi.org/10.1016/j.est.2015.12.009
  76. R. Chahine and T. K. Bose, Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy, 19, 161-164 (1994). https://doi.org/10.1016/0360-3199(94)90121-X
  77. P. A. Georgiev, D. K. Ross, P. Albers, and A. J. Ramirez-Cuesta, The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: A direct probe of microporosity and hydrogen storage performance, Carbon, 44, 2724-2738 (2006). https://doi.org/10.1016/j.carbon.2006.04.023
  78. I. Cabria, M. J. López, and J. A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials, Carbon, 45, 2649-2658 (2007). https://doi.org/10.1016/j.carbon.2007.08.003
  79. S. J. Yang, H. Jung, T. Kim, and C. R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials, Prog. Nat. Sci., 22, 631-638 (2012). https://doi.org/10.1016/j.pnsc.2012.11.006
  80. M. Endo, Y. J. Kim, H. Ohta, K. Ishii, T. Inone, T. Hayashi, Y. Nishimura, T. Maeda, and M. S. Dresselhaus, Morphology and organic EDLC applications of chemically activated AR-resin-based carbons, Carbon, 40, 2613-2626 (2002). https://doi.org/10.1016/S0008-6223(02)00191-4
  81. R. Kotz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45, 2483-2498 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  82. C. L. Liu, W. Dong, G. Cao, J. Song, L. Liu, and Y. Yang, Y. Capacitance limits of activated carbon fiber electrodes in aqueous electrolyte, J. Electrochem. Soc., 155, F1-F7 (2008). https://doi.org/10.1149/1.2799683
  83. E. Raymundo-Pinero, F. Leroux, and F. Beguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 18, 1877-1882 (2006). https://doi.org/10.1002/adma.200501905
  84. M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
  85. J. P. Zheng, Theoretical energy density for electrochemical capacitors with intercalation electrodes, J. Electrochem. Soc., 152, A1864-A1869 (2005). https://doi.org/10.1149/1.1997152
  86. A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta, 53, 1083-1091 (2007). https://doi.org/10.1016/j.electacta.2007.01.011
  87. E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774-1785 (2007). https://doi.org/10.1039/b618139m
  88. V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, and R. Santamaria, Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochim. Acta, 52, 4969-4973 (2007). https://doi.org/10.1016/j.electacta.2007.01.071
  89. A. G. Pandolfo and F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  90. M. J. Bleda-Martinez, J. A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, and A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 43, 2677-2684 (2005). https://doi.org/10.1016/j.carbon.2005.05.027
  91. G. Lota, T. A. Centeno, E. Frackowiak, and F. Stoeckli, Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors, Electrochim. Acta, 53, 2210-2216 (2008). https://doi.org/10.1016/j.electacta.2007.09.028
  92. J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 158, 765-772 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.008
  93. T. E. Rufford. D. Hulicova-Juracakova, K. Khosla. Z. Zhu, and G. Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources, 195, 912-918 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.048
  94. C. H. Huang and R. Y. Doong, Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly, Microporous Mesoporous Mater., 147, 47-52 (2012). https://doi.org/10.1016/j.micromeso.2011.05.027
  95. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong, and A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode, Nanoscale, 6, 12120-12129 (2014). https://doi.org/10.1039/C4NR03574G
  96. Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, and D. S. Wright, A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes J. Power Sources, 209, 152-157 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.089
  97. M. Olivares-Marin, J. A. Fernandez, M. J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, and F. Stoeckli, Cherry stones as precursor of activated carbons for supercapacitors, Mater. Chem. Phys., 114, 323-327 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.010
  98. G. Dobelea, T. Dizhbitea, M. V. Gilb, A. Volpertsa, and T. A. Centenob, Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and $CO_2$ capture, Biomass Bioenergy, 46, 145-154 (2012). https://doi.org/10.1016/j.biombioe.2012.09.010
  99. F. C. Wu, R. L. Tseng, C. C. Hu, and D. D. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors, J. Power Sources, 138, 351-359 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.023
  100. X. Xia, H. Liu, L. Shi, and Y. He, Tobacco stem-based activated carbons for high performance supercapacitors, J. Mater. Eng. Perform., 21, 1956-1961 (2012). https://doi.org/10.1007/s11665-011-0101-3
  101. H. Wang, Z. Li, J. K. Tak, C. M. B. Holt, X. Tan, Z. Xu, B. S. Amrirkhiz, D. Harfield, A. Amyia, T. Stephenson, and D. Mitlin, Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste, Carbon, 57, 317-328 (2013). https://doi.org/10.1016/j.carbon.2013.01.079
  102. J. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, and M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources, 240, 109-113 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.174
  103. E. N. Ruddy and L. A. Carroll, Select the best VOC control strategy, Chem. Eng. Prog., 89, 28-35 (1993).
  104. M. J. Ruhl, Recover VOCs via adsorption on activated carbon, Chem. Eng. Prog., 89, 37-41 (1993).
  105. J. H. Yun, K. Y. Hwang, and D. K. Choi, Adsorption of benzene and toluene vapors on activated carbon fiber at 298, 323, and 348 K, J. Chem. Eng. Data, 43, 843-845 (1998). https://doi.org/10.1021/je980069a
  106. M. A. Lillo-Rodenas, J. Carratala-Abrill, D. Cazorla-Amoros, and A. Linares-Solano, Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations, Fuel Process. Technol., 77-78, 331-336 (2002). https://doi.org/10.1016/S0378-3820(02)00073-5
  107. M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations, Carbon, 43, 1758-1767 (2005). https://doi.org/10.1016/j.carbon.2005.02.023
  108. J. W. Lee, W. G. Shim, M. S. Yang, and H. Moon, Adsorption isotherms of polar and nonpolar organic compounds on MCM-48 at (303.15, 313.15, and 323.15) K, J. Chem. Eng. Data, 49, 502-509 (2004). https://doi.org/10.1021/je030208a
  109. J. Benkhedda, J. N. Jaubert, D. Barth, and L. Perrin, Experimental and modeled results describing the adsorption of toluene onto activated carbon, J. Chem. Eng. Data, 45, 650-653, (2000). https://doi.org/10.1021/je000010f
  110. F. D. Yu, L. A. Auo, and G. Grevillot, Adsorption isotherms of VOCs onto an activated carbon monolith: experimental measurement and correlation with different models J. Chem. Eng. Data, 47, 467-473 (2002). https://doi.org/10.1021/je010183k
  111. J. H. Yun and D. K. Choi, Adsorption equilibria of chlorinated organic solvents onto activated carbon, Ind. Eng. Chem. Res., 37, 1422-1427 (1998). https://doi.org/10.1021/ie970701d
  112. J. W. Lee, J. W. Lee, W. G. Shim, S. H. Suh, and H. Moon, Adsorption of chlorinated organic compounds on MCM-48. J. Chem. Eng. Data, 48, 381-387 (2003). https://doi.org/10.1021/je020158u
  113. J. S. Oh. W. G. Shim, J. W. Lee, J. H. Kim, H. Moon, and G. Seo, Adsorption equilibria of water vapor on mesoporous materials, J. Chem. Eng. Data, 48, 1458-1462 (2003). https://doi.org/10.1021/je0301390
  114. M. A. Lillo-Rodenas, A. J. Fletcher, K. M. Thomas, D. Cazorla-Amoros, and A. Linares-Solano, Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration, Carbon, 44, 1455-1463 (2006). https://doi.org/10.1016/j.carbon.2005.12.001
  115. M. C. Huang, C. H. Chou, and H. Teng, Pore-size effects on activated carbon capacities for volatile organic compound adsorption, AIChE J., 48, 1804-1810 (2002). https://doi.org/10.1002/aic.690480820
  116. Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  117. K. L. Foster, R. G. Fuerman, J. Economy, S. M. Larson, and M. J. Rood, Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers, Chem. Mater., 4, 1068-1073 (1992). https://doi.org/10.1021/cm00023a026
  118. A. B. Fuertes, G. Marban, and D. M. Nevskaia, Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths, Carbon, 41, 87-96 (2003). https://doi.org/10.1016/S0008-6223(02)00274-9
  119. G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061-1085 (2006). https://doi.org/10.1016/j.biortech.2005.05.001
  120. A. A. Attia, B. S. Girgis, and N. A. Fathy, Removal of methylene blue by carbons derived from peach stones by $H_3PO_4$ activation: Batch and column studies, Dyes Pigm., 76, 282-289 (2008). https://doi.org/10.1016/j.dyepig.2006.08.039
  121. R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigm., 64, 187-192 (2005). https://doi.org/10.1016/j.dyepig.2004.05.005
  122. C. Namasivayam and N. Kanchana, Waste banana pith as adsorbent for color removal from wastewaters, Chemosphere, 25, 1691-1705 (1992). https://doi.org/10.1016/0045-6535(92)90316-J
  123. C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan, Removal of dyes from aqueous solutions by cellulosic waste orange peel, Bioresour. Technol., 57, 37-43 (1996). https://doi.org/10.1016/0960-8524(96)00044-2
  124. T. Robinson, B. Chandran, and P. Nigam, Synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Res., 36, 2824-2830 (2002). https://doi.org/10.1016/S0043-1354(01)00521-8
  125. V. K. Garg, M. Amita, R. Kumar, and R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste, Dyes Pigm., 63, 243-250 (2004). https://doi.org/10.1016/j.dyepig.2004.03.005
  126. Y. Bulut, N. Gozubenli, and H. Aydin, Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144, 300-306 (2006).
  127. L. Chun, C. Hongzhang, and L. Zuohu, Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw, Process Biochem., 39, 541-545 (2004). https://doi.org/10.1016/S0032-9592(03)00087-6
  128. N. Feng, X. Guo, S. Liang, Y. Zhu, and J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater., 185, 49-54 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.114
  129. J. G. Flores-Ganaica, L. Morales-Barrera, G. Pineda-Cannacho, and E. Cristiani-Urbina, Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds, Bioresour. Technol., 136, 635-643 (2013). https://doi.org/10.1016/j.biortech.2013.02.059
  130. Y. Bulut and Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci., 19, 160-166 (2007). https://doi.org/10.1016/S1001-0742(07)60026-6
  131. P. S. Kumar, S. Ramalingam, R. V. Abhinaya, S. D. Kirupa, A. Murugesan, and S. Sivanesan, Adsorption of metal ions onto the chemically modified agricultural waste, Clean (Weinh), 40, 188-197 (2012).

Cited by

  1. A Hybrid Reactor System Comprised of Non-Thermal Plasma and Mn/Natural Zeolite for the Removal of Acetaldehyde from Food Waste vol.8, pp.9, 2017, https://doi.org/10.3390/catal8090389