DOI QR코드

DOI QR Code

Scale-up of Optimized Chemical Processes for Micron and Submicron Products

마이크론 이하 단위의 제품생산 최적화를 위한 화학공정의 스케일업

  • Chung, Young Mi (Korea University of Technology and Education, School of Energy, Materials & Chemical Engineering)
  • 정영미 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2016.12.21
  • Accepted : 2016.12.31
  • Published : 2017.02.10

Abstract

This review deals with scale-up strategies for optimized chemical processes particularly for micron and submicron products. The method of finding scale-up factors was also introduced for two systems, a system with chemical reaction and a system without chemical reaction. This review is expected to serve as an initial guideline for process engineers who are to scale up their current chemical processes for small products of micron or submicron size.

본 총설에서는 마이크론 사이즈 이하 제품에 대한 최적화적인 화학공정의 스케일업을 위한 전략을 소개한다. 최적화된 화학공정의 스케일업을 위해 구해야 할 스케일업 인자의 정의와 이를 도출하는 방법을 소개하였으며, 특히 무반응 시스템, 유반응 시스템으로 분류하여 각각에 대해 서로 다른 스케일업 인자를 찾은 기준을 소개하고, 예시를 들어 논의하였다. 본지에서 소개된 스케일업 인자를 구하는 방법론이 마이크론 사이즈 이하 제품에 대한 화학공정을 스케일업하고자 하는 엔지니어들에게 초기 지침서가 될 것으로 기대된다.

Keywords

References

  1. J. M. Matsen, Scale-up of fluidized bed processes: Principle and practice, Powder Technol., 88, 237-244 (1996). https://doi.org/10.1016/S0032-5910(96)03126-9
  2. M. Perrut and J.-Y. Clavier, Supercritical fluid formulation: Process choice and scale-up, Ind. Eng. Chem. Res., 42, 6375-6383 (2003). https://doi.org/10.1021/ie030144x
  3. D. Weuster-Botz, D. Hekmat, R. Puskeiler, and E. Franco-Lara, Enabling technologies: fermentation and downstream processing, Adv. Biochem. Eng. Biotechnol., 105, 205-247 (2007).
  4. L. Z. He and Y. Sun, Purification of lysozyme by multistage affinity filtration. Bioprocess Biosyst. Eng., 25, 155-164 (2002). https://doi.org/10.1007/s00449-002-0288-7
  5. B. K. Lonsane, G. Saucedo-Castaneda, M. Raimbault, S. Roussos, G. Viniegra-Gonzalez, N. P. Ghildyal, M. Ramakrishna, and M. M. Krishnaiah, Scale-up strategies for solid state fermentation systems, Process Biochem., 27, 259-273 (1992). https://doi.org/10.1016/0032-9592(92)85011-P
  6. T. Kamiya, M. Kiminoyama, K. Nishi, and R. Misumi, Scale-up factor for mean drop diameter in batch rotor-stator mixers, J. Chem. Eng. Jpn., 43, 326-332 (2010). https://doi.org/10.1252/jcej.09we142
  7. V. A. Atiemo-Obeng and R. V. Calabrese, Handbook of Industrial Mixing: Science and Practice, John Wiley & Sons, Hoboken, USA, 470-505 (2004).
  8. J. T. Davies, Drop sizes of emulsions related to turbulent energy dissipation rates, Chem. Eng. Sci., 40, 839-842 (1985). https://doi.org/10.1016/0009-2509(85)85036-3
  9. J. T. Davies, A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils, Chem. Eng. Sci., 42, 1671-1676 (1987). https://doi.org/10.1016/0009-2509(87)80172-0
  10. Y. Sumi and M. Kamiwano, Production method for objective size of suspension droplet in different scale of mixing devices, Japanese Patent 066284 (2002).
  11. Y. F. Maa and C. Hsu, Liquid-liquid emulsification by rotor/stator homogenization, J. Control. Release, 38, 219-228 (1996). https://doi.org/10.1016/0168-3659(95)00123-9
  12. F. Barailler, M. Heniche, and P. A. Tanguy, CFD analysis of a rotor-stator mixer with viscous fluids, Chem. Eng. Sci., 61, 2888-2894 (2006). https://doi.org/10.1016/j.ces.2005.10.064
  13. R. V. Calabrese, M. K. Francis, V. P. Mishra, and S. Phongikaroon, Measurement and analysis of drop size in batch rotor-stator mixer, Proceedings of 10th European Conference on Mixing, July 2-5, Delft, Netherlands (2000).
  14. T. Hielscher, Ultrasonic production of nano-size dispersions and emulsions, Dans European Nano Systems Worshop - ENS 2005, Dec. 14-16, Paris, France (2005).
  15. I. Sole, C. M. Pey, A. Maestro, C. Gonzalez, M. Porras, C. Solans, and J. M. Gutierrez, Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up, J. Colloid Interface Sci., 344, 417-423 (2010). https://doi.org/10.1016/j.jcis.2009.11.046
  16. E. Paul and R. E. Treybal, Mixing and product distribution for a liquid-phase, second-order, competitive-consecutive reaction, AIChE J., 17, 718-724 (1971). https://doi.org/10.1002/aic.690170340
  17. J. C. Ogbonna, H. Mashima, and H. Tanaka, Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor, Bioresour. Technol., 76, 1-8 (2001). https://doi.org/10.1016/S0960-8524(00)00084-5
  18. R. Philippe, P. Serp, P. Kalck, Y. Kihn, S. Bordere, D. Plee, P. Gaillard, D. Bernard, and B. Caussat, Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition, AIChE J., 55, 450-464 (2009). https://doi.org/10.1002/aic.11676
  19. J. B. Romero and L. N. Johanson, Factors affecting fluidized bed quality, Chem. Eng. Prog. Symp. Ser., 58, 28-37 (1962).
  20. T. M. Knowlton, S. B. R. Karri, and A. Issangya, Scale-up of fluidized-bed hydrodynamics, Powder Technol., 150, 72-77 (2005). https://doi.org/10.1016/j.powtec.2004.11.036
  21. T. E. Broadhurst and H. A. Becker, Onset of fluidization and slugging in beds of uniform particles, AIChE J., 21, 238-247 (1975). https://doi.org/10.1002/aic.690210204
  22. L. R. Glicksman, Scaling relationships for fluidized beds, Chem. Eng. Sci., 39, 1373-1379 (1984). https://doi.org/10.1016/0009-2509(84)80070-6
  23. J. R. Ommen, M. Teuling, J. Nijenhuis, and B. G. M. Wachem, Computational validation of the scaling rules for fluidized beds, Powder Technol., 163, 32-40 (2006). https://doi.org/10.1016/j.powtec.2006.01.010
  24. C. Sierra, F. Bonniol, R. Occelli, and L. Tadrist, Practical scaling consideration for dense gas fluidized beds interacting with the air-supply system, Chem. Eng. Sci., 64, 3717-3720 (2009). https://doi.org/10.1016/j.ces.2009.04.042
  25. J. Sanderson and M. Rhodes, Bubbling fluidized bed scaling laws: evaluation at large scales, AIChE J., 51, 2686-2694 (2005). https://doi.org/10.1002/aic.10511
  26. D. L. Marchisio, L. Rivautell, and A. A. Barresi, Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 52, 1877-1887 (2006). https://doi.org/10.1002/aic.10786
  27. S. Tissot, M. Farhat, D. L. Hacker, T. Anderlei, M. Kuhner, C. Comninellis, and F. Wurm, Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors, Biochem. Eng. J., 52, 181-186 (2010). https://doi.org/10.1016/j.bej.2010.08.005
  28. F. Garcia-Ochoa and E. Gomez, Bioreactor Scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnol. Adv., 27, 153-176 (2009). https://doi.org/10.1016/j.biotechadv.2008.10.006
  29. R. Gamboa-Suasnavart, L. Marin-Palacio, J. A. Marinez-Sotelo, C. Espitia, L. Servin-Gonzalez, N. A. Valdez-Cruz, and M. A. Trujillo-Roldan, Scale-up from shake flasks to bioreactor, based on power input and Streptomyceslividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis, World J. Microbiol. Biotechnol., 29, 1421-1429 (2013). https://doi.org/10.1007/s11274-013-1305-5