DOI QR코드

DOI QR Code

Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

  • Nguyen, Lich Thi (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Lee, Yeon-Hee (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Sharma, Ashish Ranjan (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Park, Jong-Bong (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Jagga, Supriya (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Sharma, Garima (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Lee, Sang-Soo (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital) ;
  • Nam, Ju-Suk (Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital)
  • Received : 2016.11.08
  • Accepted : 2017.01.17
  • Published : 2017.03.01

Abstract

Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

Keywords

References

  1. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol . 2005;23:7350-7360. https://doi.org/10.1200/JCO.2005.03.3845
  2. Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38:698-707. https://doi.org/10.1016/j.ctrv.2011.11.005
  3. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Rakha EA, Richardson AL, Schmitt FC, Tan PH, Tse GM, Weigelt B, Ellis IO, Reis-Filho JS. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24:157-167. https://doi.org/10.1038/modpathol.2010.200
  4. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007;8:235-244. https://doi.org/10.1016/S1470-2045(07)70074-8
  5. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568-2581. https://doi.org/10.1200/JCO.2007.13.1748
  6. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429-4434. https://doi.org/10.1158/1078-0432.CCR-06-3045
  7. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28:3271-3277. https://doi.org/10.1200/JCO.2009.25.9820
  8. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol. 1993;45:13-19. https://doi.org/10.1016/0006-2952(93)90371-3
  9. Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001;56:683-687. https://doi.org/10.1016/S0014-827X(01)01111-9
  10. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29:405-434. https://doi.org/10.1007/s10555-010-9235-2
  11. van Rijn J, van den Berg J. Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells. Clin Cancer Res. 1997;3:1775-1779.
  12. Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H. Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer. 1990;45:536-539. https://doi.org/10.1002/ijc.2910450327
  13. Sharmila G, Bhat FA, Arunkumar R, Elumalai P, Raja Singh P, Senthilkumar K, Arunakaran J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin Nutr. 2014;33:718-726. https://doi.org/10.1016/j.clnu.2013.08.011
  14. Kim GT, Lee SH, Kim JI, Kim YM. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med. 2014;33:863-869. https://doi.org/10.3892/ijmm.2014.1658
  15. Maurya AK, Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep. 2015;42:1419-1429. https://doi.org/10.1007/s11033-015-3921-7
  16. Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and $NF-{\kappa}B$ inhibition. Eur J Pharmacol. 2010;649:84-91. https://doi.org/10.1016/j.ejphar.2010.09.020
  17. Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif. 2013;46:153-163. https://doi.org/10.1111/cpr.12017
  18. Jeong JH, An JY, Kwon YT, Li LY, Lee YJ. Quercetin-induced ubiquitination and down-regulation of Her-2/neu. J Cell Biochem. 2008;105:585-595. https://doi.org/10.1002/jcb.21859
  19. Huang CY, Chan CY, Chou IT, Lien CH, Hung HC, Lee MF. Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem. 2013;24:1596-1603. https://doi.org/10.1016/j.jnutbio.2013.01.010
  20. Gulati N, Laudet B, Zohrabian VM, Murali R, Jhanwar-Uniyal M. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res. 2006;26:1177-1181.
  21. Sun ZJ, Chen G, Hu X, Zhang W, Liu Y, Zhu LX, Zhou Q, Zhao YF. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis. 2010;15:850-863. https://doi.org/10.1007/s10495-010-0497-5
  22. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell . 2004;117:225-237. https://doi.org/10.1016/S0092-8674(04)00302-2
  23. Zou Y, Tsai WB, Cheng CJ, Hsu C, Chung YM, Li PC, Lin SH, Hu MC. Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Res. 2008;10:R21. https://doi.org/10.1186/bcr1872
  24. Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 2015;15:958. https://doi.org/10.1186/s12885-015-1965-7
  25. Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, Burgering BM, Coombes RC, Lam EW. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 2006;66:212-220. https://doi.org/10.1158/0008-5472.CAN-05-1997
  26. Krol J, Francis RE, Albergaria A, Sunters A, Polychronis A, Coombes RC, Lam EW. The transcription factor FOXO3a is a crucial cellular target of gefitinib (Iressa) in breast cancer cells. Mol Cancer Ther. 2007;6:3169-3179. https://doi.org/10.1158/1535-7163.MCT-07-0507
  27. Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA, Coffer PJ, Medema RH, Coombes RC, Lam EW. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003;278:49795-49805. https://doi.org/10.1074/jbc.M309523200
  28. Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21:8696-8704. https://doi.org/10.1038/sj.onc.1206034
  29. Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol. 2002;119:22-26. https://doi.org/10.1046/j.1523-1747.2002.01781.x
  30. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400-414. https://doi.org/10.1038/nrc2657
  31. Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008;27:2312-2319. https://doi.org/10.1038/onc.2008.24
  32. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002;22:7842-7852. https://doi.org/10.1128/MCB.22.22.7842-7852.2002
  33. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, Keely PJ, Longmore GD. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677-687. https://doi.org/10.1038/ncb2743
  34. Ishikawa Y, Kitamura M. Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int . 2000;58:1078-1087. https://doi.org/10.1046/j.1523-1755.2000.00265.x
  35. Hu XT, Ding C, Zhou N, Xu C. Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo. Eur J Pharmacol. 2015;754:115-124. https://doi.org/10.1016/j.ejphar.2015.02.007
  36. Yang T, Kong B, Gu JW, Kuang YQ, Cheng L, Yang WT, Xia X, Shu HF. Anti-apoptotic and anti-oxidative roles of quercetin after traumatic brain injury. Cell Mol Neurobiol. 2014;34:797-804. https://doi.org/10.1007/s10571-014-0070-9
  37. Ferraresi R, Troiano L, Roat E, Lugli E, Nemes E, Nasi M, Pinti M, Fernandez MI, Cooper EL, Cossarizza A. Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res. 2005;39:1249-1258.
  38. Lee YK, Hwang JT, Kwon DY, Surh YJ, Park OJ. Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett. 2010;292:228-236. https://doi.org/10.1016/j.canlet.2009.12.005
  39. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6:24049. https://doi.org/10.1038/srep24049
  40. Youn H, Jeong JC, Jeong YS, Kim EJ, Um SJ. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013;36:944-951. https://doi.org/10.1248/bpb.b12-01004
  41. Bach A, Bender-Sigel J, Schrenk D, Flugel D, Kietzmann T. The antioxidant quercetin inhibits cellular proliferation via HIF-1-dependent induction of p21WAF. Antioxid Redox Signal. 2010;13:437-448. https://doi.org/10.1089/ars.2009.3000
  42. Mu C, Jia P, Yan Z, Liu X, Li X, Liu H. Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find Exp Clin Pharmacol. 2007;29:179-183. https://doi.org/10.1358/mf.2007.29.3.1092095
  43. Jeong JH, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem. 2009;106:73-82. https://doi.org/10.1002/jcb.21977
  44. Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, Chen DR. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol. 2009;28:493-503. https://doi.org/10.1177/0960327109107002
  45. Tao SF, He HF, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem. 2015;402:93-100. https://doi.org/10.1007/s11010-014-2317-7
  46. Seo HS, Ju JH, Jang K, Shin I. Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor ${\alpha}$-negative breast cells. Nutr Res . 2011;31:139-146. https://doi.org/10.1016/j.nutres.2011.01.011
  47. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421-426. https://doi.org/10.1016/S0092-8674(04)00452-0
  48. Yang JY, Hung MC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res. 2009;15:752-757. https://doi.org/10.1158/1078-0432.CCR-08-0124
  49. Sunayama J, Tsuruta F, Masuyama N, Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol. 2005;170:295-304. https://doi.org/10.1083/jcb.200409117
  50. Lam EW, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans. 2006;34:722-726. https://doi.org/10.1042/BST0340722
  51. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479-2487. https://doi.org/10.1242/jcs.001222

Cited by

  1. Decitabine-Induced Changes in Human Myelodysplastic Syndrome Cell Line SKM-1 Are Mediated by FOXO3A Activation vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/4302320
  2. Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells vol.43, pp.None, 2018, https://doi.org/10.1016/j.phymed.2018.03.040
  3. The “Yin and Yang” of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers vol.10, pp.10, 2017, https://doi.org/10.3390/cancers10100346
  4. Anticancer potential of quercetin: A comprehensive review vol.32, pp.11, 2018, https://doi.org/10.1002/ptr.6155
  5. POM analyses, immunomodulatory, cytotoxic activities and polyphenolic constituents of Callistemon viridiflorus fruits vol.56, pp.2, 2017, https://doi.org/10.1016/j.bfopcu.2018.06.001
  6. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control vol.8, pp.4, 2017, https://doi.org/10.3390/antiox8040103
  7. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry vol.127, pp.None, 2019, https://doi.org/10.1016/j.fct.2019.03.007
  8. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects vol.20, pp.10, 2017, https://doi.org/10.3390/ijms20102420
  9. Iron overload threatens the growth of osteoblast cells via inhibiting the PI3K/AKT/FOXO3a/DUSP14 signaling pathway vol.234, pp.9, 2017, https://doi.org/10.1002/jcp.28217
  10. Quercetin Enhances the Anti-Tumor Effects of BET Inhibitors by Suppressing hnRNPA1 vol.20, pp.17, 2017, https://doi.org/10.3390/ijms20174293
  11. Genome-wide localization of the polyphenol quercetin in human monocytes vol.20, pp.1, 2017, https://doi.org/10.1186/s12864-019-5966-9
  12. Antitumor Effects of Quercetin in Hepatocarcinoma In Vitro and In Vivo Models: A Systematic Review vol.11, pp.12, 2017, https://doi.org/10.3390/nu11122875
  13. Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line vol.94, pp.None, 2020, https://doi.org/10.1016/j.bioorg.2019.103426
  14. Systems pharmacology in combination with proteomics reveals underlying mechanisms of Xihuang pill against triple-negative breast cancer vol.11, pp.1, 2017, https://doi.org/10.1080/21655979.2020.1834726
  15. Therapeutic potential of quercetin on human breast cancer in different dimensions vol.28, pp.1, 2020, https://doi.org/10.1007/s10787-019-00660-y
  16. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals vol.70, pp.None, 2017, https://doi.org/10.1016/j.phymed.2020.153227
  17. Vernonia calvoana Shows Promise towards the Treatment of Ovarian Cancer vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124429
  18. Micromeria fruticosa Induces Cell Cycle Arrest and Apoptosis in Breast and Colorectal Cancer Cells vol.13, pp.6, 2017, https://doi.org/10.3390/ph13060115
  19. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management vol.10, pp.39, 2020, https://doi.org/10.1039/d0ra00664e
  20. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells vol.25, pp.6, 2017, https://doi.org/10.1080/10837450.2020.1740933
  21. Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells vol.22, pp.9, 2017, https://doi.org/10.1007/s12094-020-02307-9
  22. Flavonoid-Based Cancer Therapy: An Updated Review vol.20, pp.12, 2017, https://doi.org/10.2174/1871520620666200423071759
  23. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways vol.60, pp.22, 2017, https://doi.org/10.1080/10408398.2019.1708262
  24. Quercetin as a Novel Therapeutic Approach for Lymphoma vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/3157867
  25. Analysis of core genes for colorectal cancer prognosis based on immune and stromal scores vol.9, pp.None, 2021, https://doi.org/10.7717/peerj.12452
  26. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/3919143
  27. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways vol.26, pp.5, 2017, https://doi.org/10.3390/molecules26051315
  28. Synthesis, Antiproliferative Activity and Radical Scavenging Ability of 5-O-Acyl Derivatives of Quercetin vol.26, pp.6, 2017, https://doi.org/10.3390/molecules26061608
  29. In Vitro Anticancer Activity and Oxidative Stress Biomarkers Status Determined by Usnea barbata (L.) F.H. Wigg. Dry Extracts vol.10, pp.7, 2017, https://doi.org/10.3390/antiox10071141
  30. Dietary polyphenols in chemoprevention and synergistic effect in cancer: Clinical evidences and molecular mechanisms of action vol.90, pp.None, 2017, https://doi.org/10.1016/j.phymed.2021.153554
  31. Breast Cancer: a Global Concern, Diagnostic and Therapeutic Perspectives, Mechanistic Targets in Drug Development vol.11, pp.4, 2017, https://doi.org/10.34172/apb.2021.068
  32. Onco-Preventive and Chemo-Protective Effects of Apple Bioactive Compounds vol.13, pp.11, 2017, https://doi.org/10.3390/nu13114025
  33. Exploring Mechanism of Key Chinese Herbal Medicine on Breast Cancer by Data Mining and Network Pharmacology Methods vol.27, pp.12, 2021, https://doi.org/10.1007/s11655-020-3422-y
  34. Molecular Targets of Natural Compounds with Anti-Cancer Properties vol.22, pp.24, 2017, https://doi.org/10.3390/ijms222413659