DOI QR코드

DOI QR Code

Rotatable Anisotropy Field in Exchange Coupled CoFe/MnIr(2.5 nm) Thin Films

교환 결합력을 갖는 CoFe/MnIr(2.5 nm) 박막의 회전 이방성 자기장 특성

  • Received : 2017.06.09
  • Accepted : 2017.06.14
  • Published : 2017.06.30

Abstract

The rotatable anisotropy effect was observed in the ferromagnetic resonance measurement in exchange coupled ferromagnetic/antiferromagnetic thin films and it was due to rotation of antiferromagnetic layer by the exchange coupling energy. We analyzed the CoFe thickness dependence of rotatable anisotropy field and ferromagnetic resonance linewidth in exchange coupled $CoFe(t_F)/MnIr(2.5nm)$ thin films. The rotatable anisotropy field was inversely propositional to the CoFe thickness and it was well fitted by the rotatable anisotropy energy of $0.96erg/cm^2$. The ferromagnetic resonance linewidth were linearly propositional to the rotatable anisotropy field in $t_F$ < 50 nm, while it was more dominated by the eddy current effect in $t_F$ > 50 nm.

회전 이방성 효과는 교환 결합력을 갖는 강자성/반강자성 박막의 강자성 공명 측정에서 나타나는 현상으로 교환 결합력 에너지에 의한 반강자성층의 회전에 기인한다. 본 연구에서는 $CoFe(t_F)/MnIr(2.5nm)$ 박막 재료에서 CoFe의 두께에 따른 회전 이방성 자기장과 강자성 공명 선폭 특성을 분석하였다. 회전 이방성 자기장은 $t_F$에 반비례하는 두께 의존성을 보였으며, 이들 결과는 회전 이방성 에너지가 $0.96erg/cm^2$인 조건을 만족하였다. 강자성 공명 선폭은 $t_F$ < 50 nm에서 회전 이방성 자기장의 세기에 비례하는 특성을 보였으며, $t_F$ > 50 nm에서 와전류에 의한 특성이 두드러지게 나타났다.

Keywords

References

  1. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). https://doi.org/10.1016/S0304-8853(99)00453-9
  2. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001). https://doi.org/10.1016/S0304-8853(01)00421-8
  3. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 2489 (1989).
  4. S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nature Mater. 3, 862 (2004). https://doi.org/10.1038/nmat1256
  5. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3 868 (2004). https://doi.org/10.1038/nmat1257
  6. D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 24, 140 (2014). https://doi.org/10.4283/JKMS.2014.24.5.140
  7. R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Phys. Rev. B 58, 8605 (1998). https://doi.org/10.1103/PhysRevB.58.8605
  8. J. Geshev, L. G. Pereira, and J. E. Schmidt, Phys. Rev. B 66, 134432 (2002). https://doi.org/10.1103/PhysRevB.66.134432
  9. L. Wee, R. L. Stamps, L. Malkinskil, and Z. Celinski, Phys. Rev. B 69, 134426 (2004). https://doi.org/10.1103/PhysRevB.69.134426
  10. C. Binek, S. Polisetty, X. He, and A. Berger, Phys. Rev. Lett. 96, 067201 (2006). https://doi.org/10.1103/PhysRevLett.96.067201
  11. D. Y. Kim, S. S. Yoon, C. G. Kim, M. Tsunoda, and M. Takahashi, IEEE Trans. Magn. 45, 3865, (2009). https://doi.org/10.1109/TMAG.2009.2022955
  12. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). https://doi.org/10.1103/PhysRev.102.1413
  13. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962). https://doi.org/10.1063/1.1728716
  14. T. Sato, M. Tsunoda, and M. Takahashi, J. Appl. Phys. 95, 7513 (2004). https://doi.org/10.1063/1.1669116
  15. M. Tsunoda, Y. Tsuchiya, T. Hashimoto, and M. Takahashi, J. Appl. Phys. 87, 4375 (2000). https://doi.org/10.1063/1.373081
  16. D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 24, 140 (2014). https://doi.org/10.4283/JKMS.2014.24.5.140
  17. S. Yuan, K. Yu, L. M. Yu, S. X. Cao, C. Jing, and J. C. Zhang, J. Appl. Phys. 101, 113915 (2007). https://doi.org/10.1063/1.2738387
  18. D. Y. Kim, Sae Mulli 58, 308 (2009).
  19. D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 23, 37 (2013). https://doi.org/10.4283/JKMS.2013.23.2.037
  20. S. Misukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40, 580 (2001). https://doi.org/10.1143/JJAP.40.580
  21. C. E. Patton, C. H. Wilts, and F. B. Humphrey, J. Appl. Phys. 38, 1358 (1967). https://doi.org/10.1063/1.1709621
  22. P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, J. Appl. Phys. 101, 083901 (2007).