DOI QR코드

DOI QR Code

Magnetoresistance Properties of Hybrid GMR-SV Films with Nb Buffer Layers

Nb 버퍼층과 거대자기저항-스핀밸브 하이브리드 다층박막의 자기저항 특성

  • Yang, Woo-Il (Department of Applied Physics and Electronics, Sangji University) ;
  • Choi, Jong-Gu (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
  • 양우일 (상지대학교 응용물리전자학과) ;
  • 최종구 (상지대학교 한방의료공학과) ;
  • 이상석 (상지대학교 한방의료공학과)
  • Received : 2017.05.22
  • Accepted : 2017.06.13
  • Published : 2017.06.30

Abstract

The IrMn based GMR-SV films with three different buffer layers were prepared on Corning glass by using ion beam deposition and DC magnetron sputtering method. The major and minor magnetoresistance curves for three different buffer layers beneath the structure of NiFe(15 nm)/CoFe(5 nm)/Cu(2.5 nm)/CoFe(5 nm)/NiFe(7 nm)/IrMn(10 nm)/Ta(5 nm) at room temperature have shown different magnetoresistance properties. When the samples were annealed at $250^{\circ}C$ in vacuum, the magnetoresistance ratio, the coercivity of pinned ferromagnetic layer, and the interlayer coupling field of free ferromagnetic layer were enhanced while the exchange bias coupling field did not show noticeable changes.

Corning glass 위에 형태별로 서로 다른 버퍼층(Ta, Nb, $Nb_3Al$)을 삽입하여 IrMn을 기반으로 한 거대자기저항-스핀밸브(GMR-SV) 다층박막을 이온빔 증착 시스템과 DC 마그네트론 스퍼터링 시스템을 이용하여 제조하였다. 버퍼층이 다른 3가지 형태의 GMR-SV 다층박막 구조에 대해 열처리 전에 측정한 major 및 minor 자기저항(MR) 곡선에서 나타난 자기저항 특성은 형태별로 서로 다른 결과를 보여주었다. 3가지 형태의 GMR-SV 다층박막을 진공 상태에서 $250^{\circ}C$로 열처리 한 결과, 고정층의 교환결합세기를 제외한 모든 자기저항 특성이 대체적으로 향상되었다.

Keywords

References

  1. M. D. Cubells-Beltran, C. Reig, J. Madrenas, A. D. Marcellis, J. Santos, S. Cardoso, and P. P. Freitas, Sensors 16, 939 (2016). https://doi.org/10.3390/s16060939
  2. M. Z. Iqbal, G. Hussain, S. Siddique, and M. W. Iqbal, J. Magn. Magn. Mater. 432, 135 (2017). https://doi.org/10.1016/j.jmmm.2017.02.004
  3. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  4. H. R. Kaufman, J. J. Cuomo, and J. M. E. Harper, J. Vac. Sci. Technol. 21, 725 (1982). https://doi.org/10.1116/1.571819
  5. S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, San Diego, Chap. 6, pp. 123-176 (1991).
  6. P. Khajidmaa, J. G. Choi, and S. S. Lee, J. Magn. 22, 7 (2017). https://doi.org/10.4283/JMAG.2017.22.1.007
  7. B. K. Kim, J. Y. Lee, S. S. Kim, D. G. Hwang, S. S. Lee, J. Y. Hwang, M. Y. Kim, and J. R. Rhee, J. Kor. Magn. Soc. 13, 187 (2003). https://doi.org/10.4283/JKMS.2003.13.5.187
  8. J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 21, 132 (2011). https://doi.org/10.4283/JKMS.2011.21.4.132
  9. J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 20, 129 (2010). https://doi.org/10.4283/JKMS.2010.20.4.129
  10. J. G. Choi, D. G. Hwang, S. S. Lee, and J. R. Rhee, J. Kor. Phys. Soc. 62, 1954 (2013). https://doi.org/10.3938/jkps.62.1954
  11. I. L. C. Merinoa, L. C. Figueiredob, E. C. Passamanic, V. P. Nascimentoc, F. Pelegrinid, and E. B. Saitovitcha, J. Magn. Magn. Mater. 432, 494 (2017). https://doi.org/10.1016/j.jmmm.2017.02.028
  12. E. Aristomenopoulou and D. Stamopoulos, J. Appl. Phys. 118, 063904 (2015). https://doi.org/10.1063/1.4928329
  13. D. Stamopoulos, E. Aristomenopoulou, and E. Manios, Appl. Phys. Lett. 105, 112602 (2014). https://doi.org/10.1063/1.4896162
  14. S. S. Lee, B. Y. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys. 95, 7525 (2004). https://doi.org/10.1063/1.1676035
  15. C. Strunk, C. Surgers, U Paschen, and H. v. Lohneysen, Phys. Rev. B49, 4053 (1994).
  16. B. Zhao, Z. Zhang, X. Chen, X. Zhang, J. Pan, J. Ma, J. Li, Z. Wang, L. Wang, X. Xu, and Y. Jiang, J. Magn. Magn. Mater. 432, 291 (2017). https://doi.org/10.1016/j.jmmm.2017.01.085
  17. A. K. Singh and J. H. Hsu, J. Magn. Magn. Mater. 432, 96 (2017). https://doi.org/10.1016/j.jmmm.2017.01.070

Cited by

  1. Inverse Magnetoresistance Characteristic of Hybrid-Type Multilayer Structure of IrMn-Based Giant-Magnetoresistance Spin Valve and High-Tc Superconductor YBa2Cu3O7−x Film pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6659-x