DOI QR코드

DOI QR Code

ON 𝑺-CLOSED SUBMODULES

  • Received : 2016.07.05
  • Published : 2017.07.01

Abstract

A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

Keywords

References

  1. U. Albrecht, J. Dauns, and L. Fuchs, Torsion-freeness and non-singularity over right p.p.-rings, J. Algebra 285 (2005), no. 1, 98-119. https://doi.org/10.1016/j.jalgebra.2004.10.020
  2. E. Buyukasik and Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra 43 (2015), no. 2, 384-399. https://doi.org/10.1080/00927872.2013.842246
  3. E. Buyukasik and Y. Durgun, Neat-flat modules, Comm. Algebra 44 (2016), no. 1, 416-428. https://doi.org/10.1080/00927872.2014.982816
  4. A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. (2) 21 (1980), no. 3, 434-444.
  5. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkhauser Verlag, Basel, 2006.
  6. P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), no. 71, 380-398. https://doi.org/10.1007/BF01181410
  7. N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, With the collaboration of John Clark and N. Vanaja, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994.
  8. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000.
  9. L. Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970.
  10. L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143. https://doi.org/10.1007/s10998-012-7509-x
  11. K. R. Goodearl, Singular torsion and the splitting properties, Memoirs of the American Mathematical Society, No. 124, American Mathematical Society, Providence, R. I., 1972.
  12. K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules. Pure and Applied Mathematics, No. 33, Marcel Dekker, Inc., New York-Basel, 1976.
  13. K. Honda, Realism in the theory of abelian groups. I, Comment. Math. Univ. St. Paul. 5 (1956), 37-75.
  14. T. Kepka, On one class of purities, Comment. Math. Univ. Carolinae 14 (1973), 139-154.
  15. T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
  16. A. P. Misina and L. A. Skornjakov, Abelian groups and modules, Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, Moscow, 1969.
  17. W. K. Nicholson and M. F. Yousif, Quasi-Frobenius rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
  18. A. Pancar, Generation of proper classes of short exact sequences, Internat. J. Math. Math. Sci. 20 (1997), no. 3, 465-473. https://doi.org/10.1155/S016117129700063X
  19. G. Puninski and P. Rothmaler, Pure-projective modules, J. London Math. Soc. (2) 71 (2005), no. 2, 304-320. https://doi.org/10.1112/S0024610705006290
  20. G. Renault, Etude de certains anneaux A lies aux sous-modules complements dun a-module, C. R. Acad. Sci. Paris 259 (1964), 4203-4250.
  21. S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Lecture Notes in Math., 1448, 116-124, Noncommutative ring theory (Athens, OH, 1989), Springer, Berlin, 1990.
  22. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
  23. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.
  24. E. G. Sklyarenko, Relative homological algebra in the category of modules, Russian Math. Surveys 33 (1978), no. 3, 97-137. Translated from Uspekhi Mat. Nauk 33 (1978), no. 3, 85-120. https://doi.org/10.1070/RM1978v033n03ABEH002466
  25. A. Tercan, On CLS-modules, Rocky Mountain J. Math. 25 (1995), no. 4, 1557-1564. https://doi.org/10.1216/rmjm/1181072161
  26. C. P. Walker, Relative homological algebra and Abelian groups, Illinois J. Math. 10 (1966), 186-209.
  27. J. Wang and D. Wu, When an S-closed submodule is a direct summand, Bull. Korean Math. Soc. 51 (2014), no. 3, 613-619. https://doi.org/10.4134/BKMS.2014.51.3.613
  28. Q. Zeng, On generalized CS-modules, Czechoslovak Math. J. 65(140) (2015), no. 4, 891-904. https://doi.org/10.1007/s10587-015-0215-0
  29. H. Zoschinger, Schwach-flache moduln, Comm. Algebra 41 (2013), no. 12, 4393-4407. https://doi.org/10.1080/00927872.2012.699570