DOI QR코드

DOI QR Code

HAUSDORFF DIMENSION OF THE SET CONCERNING WITH BOREL-BERNSTEIN THEORY IN LÜROTH EXPANSIONS

  • Shen, Luming (Science College Hunan Agricultural University)
  • Received : 2016.07.26
  • Published : 2017.07.01

Abstract

It is well known that every $x{\in}(0,1]$ can be expanded to an infinite $L{\ddot{u}}roth$ series with the form of $$x={\frac{1}{d_1(x)}}+{\cdots}+{\frac{1}{d_1(x)(d_1(x)-1){\cdots}d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}}+{{\cdots}}$$, where $d_n(x){\geq}2$ for all $n{\geq}1$. In this paper, the set of points with some restrictions on the digits in $L{\ddot{u}}roth$ series expansions are considered. Namely, the Hausdorff dimension of following the set $$F_{\phi}=\{x{\in}(0,1]\;:\;d_n(x){\geq}{\phi}(n),\;i.o.n}$$ is determined, where ${\phi}$ is an integer-valued function defined on ${\mathbb{N}}$, and ${\phi}(n){\rightarrow}{\infty}$ as $n{\rightarrow}{\infty}$.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Hunan Agricultural University, Natural Science Foundation of Hunan Province

References

  1. L. Barreira and G. Iommi, Frequency of digits in the Luroth expansion, J. Number Theory 129 (2009), no. 6, 1479-1490. https://doi.org/10.1016/j.jnt.2008.06.002
  2. K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs 29, Mathematical Association of America, Washington DC, 2002.
  3. K. Dajani and C. Kraaikamp, On approximation by Luroth series, J. Theor. Nombres Bordeaux 8 (1996), no. 2, 331-346. https://doi.org/10.5802/jtnb.172
  4. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Application, Wiley, 1990.
  5. K. J. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
  6. A. H. Fan, L. M. Liao, J. H. Ma, and B. W. Wang, Dimension of Besicovitch-Eggleston sets in the countable symbolic space, Nonlinearity 23 (2010), no. 5, 1185-1197. https://doi.org/10.1088/0951-7715/23/5/009
  7. J. Galambos, Reprentations of Real Numbers by Infinite Series, Lecture Notes in Math. 502, Springer, 1976.
  8. I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199-228. https://doi.org/10.1017/S030500410002171X
  9. H. Jager and C. De Vroedt, Luroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser. A 31 (1969), 31-42.
  10. T. Luczak, On the fractional dimension of sets of continued fractions, Mathematika 44 (1997), no. 1, 50-53. https://doi.org/10.1112/S0025579300011955
  11. J. Luroth, Ueber eine eindeutige Entwichelung von Zahlen in eine unendliche Reihe, Math. Ann. 21 (1883), no. 3, 411-423. https://doi.org/10.1007/BF01443883
  12. T. Salat, Zur metrischen Theorie der Lurothschen Entwicklungen der reellen Zahle, Czechoslovak Math. J. 18 (1968), no. 3, 489-522.
  13. F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford, Clarendon Press, 1995.
  14. L. M. Shen and K. Fang, The fractional dimensional theory in Luroth expansion, Czechoslovak Math. J. 61(136) (2011), no. 3, 795-807. https://doi.org/10.1007/s10587-011-0028-8
  15. L. M. Shen and J. Wu, On the error sum-function of Luroth series, J. Math. Anal. Appl. 329 (2006), no. 2, 1440-1445. https://doi.org/10.1016/j.jmaa.2006.07.049
  16. L. M. Shen, Y. Y. Yu, and Y. X. Zou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014), no. 4, 1015-1023. https://doi.org/10.1142/S1793042114500122
  17. B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math. 218 (2008), no. 5, 1319-1339. https://doi.org/10.1016/j.aim.2008.03.006