DOI QR코드

DOI QR Code

The efficacy of combination treatment of gabapentin and electro-acupuncture on paclitaxel-induced neuropathic pain

  • Kim, Min Joon (Department of East-West Medicine, Graduate School, Kyung Hee University) ;
  • Lee, Ji Hwan (Department of Science in Korean Medicine, Graduate School, Kyung Hee University) ;
  • Jang, Jo Ung (Department of East-West Medicine, Graduate School, Kyung Hee University) ;
  • Quan, Fu Shi (Department of Medical Zoology, School of Medicine, Kyung Hee University) ;
  • Kim, Sun Kwang (Department of East-West Medicine, Graduate School, Kyung Hee University) ;
  • Kim, Woojin (Department of East-West Medicine, Graduate School, Kyung Hee University)
  • 투고 : 2017.06.20
  • 심사 : 2017.08.01
  • 발행 : 2017.11.01

초록

Paclitaxel, a chemotherapeutic drug, induces severe peripheral neuropathy. Gabapentin (GBT) is a first line agent used to treat neuropathic pain, and its effect is mediated by spinal noradrenergic and muscarinic cholinergic receptors. Electro-acupuncture (EA) is used for treating various types of pain via its action through spinal opioidergic and noradrenergic receptors. Here, we investigated whether combined treatment of these two agents could exert a synergistic effect on paclitaxel-induced cold and mechanical allodynia, which were assessed by the acetone drop test and von Frey filament assay, respectively. Significant signs of allodynia were observed after four paclitaxel injections (a cumulative dose of 8 mg/kg, i.p.). GBT (3, 30, and 100 mg/kg, i.p.) or EA (ST36, Zusanli) alone produced dose-dependent anti-allodynic effects. The medium and highest doses of GBT (30 and 100 mg/kg) provided a strong analgesic effect, but they induced motor dysfunction in Rota-rod tests. On the contrary, the lowest dose of GBT (3 mg/kg) did not induce motor weakness, but it provided a brief analgesic effect. The combination of the lowest dose of GBT and EA resulted in a greater and longer effect, without inducing motor dysfunction. This effect on mechanical allodynia was blocked by spinal opioidergic (naloxone, $20{\mu}g$), or noradrenergic (idazoxan, $10{\mu}g$) receptor antagonist, whereas on cold allodynia, only opioidergic receptor antagonist blocked the effect. In conclusion, the combination of the lowest dose of GBT and EA has a robust and enduring analgesic action against paclitaxel-induced neuropathic pain, and it should be considered as an alternative treatment method.

키워드

참고문헌

  1. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA; Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34-43. https://doi.org/10.1056/NEJMoa052985
  2. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666-2676. https://doi.org/10.1056/NEJMoa072113
  3. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542-2550. https://doi.org/10.1056/NEJMoa061884
  4. Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 2000;88:2619-2628. https://doi.org/10.1002/1097-0142(20000601)88:11<2619::AID-CNCR26>3.0.CO;2-J
  5. Verweij J, Clavel M, Chevalier B. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): not simply two of a kind. Ann Oncol. 1994;5:495-505. https://doi.org/10.1093/oxfordjournals.annonc.a058903
  6. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352:1324-1334. https://doi.org/10.1056/NEJMoa042580
  7. Maestri A, De Pasquale Ceratti A, Cundari S, Zanna C, Cortesi E, Crino L. A pilot study on the effect of acetyl-L-carnitine in paclitaxel-and cisplatin-induced peripheral neuropathy. Tumori. 2005;91:135-138.
  8. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR. Taxolinduced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109:132-142. https://doi.org/10.1016/j.pain.2004.01.021
  9. Golden JP, Johnson EM. Models of chemotherapy drug-induced peripheral neuropathy. Drug Discov Today: Dis Model. 2004;1:186-191. https://doi.org/10.1016/j.ddmod.2004.09.005
  10. Ward SJ, Ramirez MD, Neelakantan H, Walker EA. Cannabidiol prevents the development of cold and mechanical allodynia in paclitaxel-treated female C57Bl6 mice. Anesth Analg. 2011;113:947-950. https://doi.org/10.1213/ANE.0b013e3182283486
  11. Dworkin RH, O'Connor AB, Audette J, Baron R, Gourlay GK, Haanpaa ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3 Suppl):S3-14.
  12. Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA. 1998;280:1837-1842. https://doi.org/10.1001/jama.280.21.1837
  13. Rice AS, Maton S; Postherpetic Neuralgia Study Group. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Pain. 2001;94:215-224. https://doi.org/10.1016/S0304-3959(01)00407-9
  14. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, LaMoreaux L, Garofalo E. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA. 1998;280:1831-1836. https://doi.org/10.1001/jama.280.21.1831
  15. Tsavaris N, Kopterides P, Kosmas C, Efthymiou A, Skopelitis H, Dimitrakopoulos A, Pagouni E, Pikazis D, Zis PV, Koufos C. Gabapentin monotherapy for the treatment of chemotherapy-induced neuropathic pain: a pilot study. Pain Med. 2008;9:1209-1216. https://doi.org/10.1111/j.1526-4637.2007.00325.x
  16. Partridge BJ, Chaplan SR, Sakamoto E, Yaksh TL. Characterization of the effects of gabapentin and 3-isobutyl-gamma-aminobutyric acid on substance P-induced thermal hyperalgesia. Anesthesiology. 1998;88:196-205. https://doi.org/10.1097/00000542-199801000-00028
  17. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem. 1996;271:5768-5776. https://doi.org/10.1074/jbc.271.10.5768
  18. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci. 2001;21:1868-1875. https://doi.org/10.1523/JNEUROSCI.21-06-01868.2001
  19. Tanabe M, Takasu K, Kasuya N, Shimizu S, Honda M, Ono H. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br J Pharmacol. 2005;144:703-714. https://doi.org/10.1038/sj.bjp.0706109
  20. Hayashida K, Eisenach JC. Multiplicative interactions to enhance gabapentin to treat neuropathic pain. Eur J Pharmacol. 2008;598:21-26. https://doi.org/10.1016/j.ejphar.2008.09.004
  21. Takasu K, Honda M, Ono H, Tanabe M. Spinal alpha(2)-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury. Br J Pharmacol. 2006;148:233-244. https://doi.org/10.1038/sj.bjp.0706731
  22. Caraceni A, Zecca E, Bonezzi C, Arcuri E, Yaya Tur R, Maltoni M, Visentin M, Gorni G, Martini C, Tirelli W, Barbieri M, De Conno F. Gabapentin for neuropathic cancer pain: a randomized controlled trial from the Gabapentin Cancer Pain Study Group. J Clin Oncol. 2004;22:2909-2917. https://doi.org/10.1200/JCO.2004.08.141
  23. Murotani T, Ishizuka T, Nakazawa H, Wang X, Mori K, Sasaki K, Ishida T, Yamatodani A. Possible involvement of histamine, dopamine, and noradrenalin in the periaqueductal gray in electroacupuncture pain relief. Brain Res. 2010;1306:62-68. https://doi.org/10.1016/j.brainres.2009.09.117
  24. Deluze C, Bosia L, Zirbs A, Chantraine A, Vischer TL. Electroacupuncture in fibromyalgia: results of a controlled trial. BMJ. 1992;305:1249-1252. https://doi.org/10.1136/bmj.305.6864.1249
  25. Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS. Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol. 2005;195:430-436. https://doi.org/10.1016/j.expneurol.2005.06.018
  26. Kim SK, Moon HJ, Park JH, Lee G, Shin MK, Hong MC, Bae H, Jin YH, Min BI. The maintenance of individual differences in the sensitivity of acute and neuropathic pain behaviors to electroacupuncture in rats. Brain Res Bull. 2007;74:357-360. https://doi.org/10.1016/j.brainresbull.2007.07.006
  27. Kim W, Kim SK, Min BI. Mechanisms of electroacupuncture-induced analgesia on neuropathic pain in animal model. Evid Based Complement Alternat Med. 2013;2013:436913.
  28. Bao T, Zhang R, Badros A, Lao L. Acupuncture treatment for bortezomib-induced peripheral neuropathy: a case report. Pain Res Treat. 2011;2011:920807.
  29. Donald GK, Tobin I, Stringer J. Evaluation of acupuncture in the management of chemotherapy-induced peripheral neuropathy. Acupunct Med. 2011;29:230-233. https://doi.org/10.1136/acupmed.2011.010025
  30. Lee JH, Go D, Kim W, Lee G, Bae H, Quan FS, Kim SK. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain. Korean J Physiol Pharmacol. 2016;20:407-414. https://doi.org/10.4196/kjpp.2016.20.4.407
  31. Moon HJ, Lim BS, Lee DI, Ye MS, Lee G, Min BI, Bae H, Na HS, Kim SK. Effects of electroacupuncture on oxaliplatin-induced neuropathic cold hypersensitivity in rats. J Physiol Sci. 2014;64:151-156. https://doi.org/10.1007/s12576-013-0297-0
  32. Kim JH, Min BI, Na HS, Park DS. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res. 2004;998:230-236. https://doi.org/10.1016/j.brainres.2003.11.045
  33. Park JH, Kim SK, Kim HN, Sun B, Koo S, Choi SM, Bae H, Min BI. Spinal cholinergic mechanism of the relieving effects of electroacupuncture on cold and warm allodynia in a rat model of neuropathic pain. J Physiol Sci. 2009;59:291-298. https://doi.org/10.1007/s12576-009-0035-9
  34. Choi JW, Kang SY, Choi JG, Kang DW, Kim SJ, Lee SD, Park JB, Ryu YH, Kim HW. Analgesic effect of electroacupuncture on paclitaxelinduced neuropathic pain via spinal opioidergic and adrenergic mechanisms in mice. Am J Chin Med. 2015;43:57-70. https://doi.org/10.1142/S0192415X15500044
  35. Smith SB, Crager SE, Mogil JS. Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci. 2004;74:2593-2604. https://doi.org/10.1016/j.lfs.2004.01.002
  36. Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic effects of bee venom derived phospholipase A(2) in a mouse model of oxaliplatininduced neuropathic pain. Toxins (Basel). 2015;7:2422-2434. https://doi.org/10.3390/toxins7072422
  37. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004;109:150-161. https://doi.org/10.1016/j.pain.2004.01.029
  38. Joseph EK, Levine JD. Comparison of oxaliplatin- and cisplatin-induced painful peripheral neuropathy in the rat. J Pain. 2009;10:534-541. https://doi.org/10.1016/j.jpain.2008.12.003
  39. Shibata K, Sugawara T, Fujishita K, Shinozaki Y, Matsukawa T, Suzuki T, Koizumi S. The astrocyte-targeted therapy by Bushi for the neuropathic pain in mice. PLoS One. 2011;6:e23510. https://doi.org/10.1371/journal.pone.0023510
  40. Lee BH, Kim J, Lee RM, Choi SH, Kim HJ, Hwang SH, Lee MK, Bae CS, Kim HC, Rhim H, Lim K, Nah SY. Gintonin enhances performance of mice in rotarod test: involvement of lysophosphatidic acid receptors and catecholamine release. Neurosci Lett. 2016;612:256-260. https://doi.org/10.1016/j.neulet.2015.12.026
  41. Hirata H, Takahashi A, Shimoda Y, Koide T. Caspr3-deficient mice exhibit low motor learning during the early phase of the accelerated rotarod task. PLoS One. 2016;11:e0147887. https://doi.org/10.1371/journal.pone.0147887
  42. Laughlin TM, Tram KV, Wilcox GL, Birnbaum AK. Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J Pharmacol Exp Ther. 2002;302:1168-1175. https://doi.org/10.1124/jpet.302.3.1168
  43. Miranda HF, Noriega V, Zepeda R, Zanetta P, Prieto-Rayo J, Prieto JC, Sierralta F. Antinociceptive synergism of gabapentin and nortriptyline in mice with partial sciatic nerve ligation. Pharmacology. 2015;95:59-64. https://doi.org/10.1159/000370244
  44. Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, Choi CB, Koh HG. A proposed transpositional acupoint system in a mouse and rat model. Res Vet Sci. 2008;84:159-165. https://doi.org/10.1016/j.rvsc.2007.04.004
  45. Kim W, Kim MJ, Go D, Min BI, Na HS, Kim SK. Combined effects of bee venom acupuncture and morphine on oxaliplatin-induced neuropathic pain in mice. Toxins (Basel). 2016;8:33. https://doi.org/10.3390/toxins8020033
  46. Karlsten R, Gordh T. How do drugs relieve neurogenic pain? Drugs Aging. 1997;11:398-412. https://doi.org/10.2165/00002512-199711050-00006
  47. Serpell MG; Neuropathic pain study group. Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebocontrolled trial. Pain. 2002;99:557-566. https://doi.org/10.1016/S0304-3959(02)00255-5
  48. Gillin S, Sorkin LS. Gabapentin reverses the allodynia produced by the administration of anti-GD2 ganglioside, an immunotherapeutic drug. Anesth Analg. 1998;86:111-116.
  49. Xiao WH, Bennett G. Gabapentin has an antinociceptive effect mediated via a spinal site of action in a rat model of painful peripheral neuropathy. Analgesia. 1996;2:267-273.
  50. Rosner H, Rubin L, Kestenbaum A. Gabapentin adjunctive therapy in neuropathic pain states. Clin J Pain. 1996;12:56-58. https://doi.org/10.1097/00002508-199603000-00010
  51. Ling B, Authier N, Balayssac D, Eschalier A, Coudore F. Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain. 2007;128:225-234. https://doi.org/10.1016/j.pain.2006.09.016
  52. Zbarcea CE, Negres S, Cristea AN, Chirita C. The effect of dextromethorphan, gabapentin, amitriptyline and tramadol on a mouse model of vincristine-induced peripheral neuropathy. Farmacia. 2011;59:809-819.
  53. Gauchan P, Andoh T, Ikeda K, Fujita M, Sasaki A, Kato A, Kuraishi Y. Mechanical allodynia induced by paclitaxel, oxaliplatin and vincristine: different effectiveness of gabapentin and different expression of voltage-dependent calcium channel alpha(2)delta-1 subunit. Biol Pharm Bull. 2009;32:732-734. https://doi.org/10.1248/bpb.32.732
  54. Eckhardt K, Ammon S, Hofmann U, Riebe A, Gugeler N, Mikus G. Gabapentin enhances the analgesic effect of morphine in healthy volunteers. Anesth Analg. 2000;91:185-191.
  55. Conno D. Gabapentin as an adjuvant to opioid analgesia for neuropathic cancer pain-report of two cases. J Pain Symptom Manage. 1999;6:441-445.
  56. Caraceni A, Zecca E, Martini C, De Conno F. Gabapentin as an adjuvant to opioid analgesia for neuropathic cancer pain. J Pain Symptom Manage. 1999;17:441-445. https://doi.org/10.1016/S0885-3924(99)00033-0
  57. Gim GT, Lee JH, Park E, Sung YH, Kim CJ, Hwang WW, Chu JP, Min BI. Electroacupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain. Brain Res Bull. 2011;86:403-411. https://doi.org/10.1016/j.brainresbull.2011.09.010
  58. Campero M, Serra J, Ochoa JL. C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol. 1996;497:565-572. https://doi.org/10.1113/jphysiol.1996.sp021789
  59. Hao JX, Yu W, Xu XJ, Wiesenfeld-Hallin Z. Capsaicin-sensitive afferents mediate chronic cold, but not mechanical, allodynia-like behavior in spinally injured rats. Brain Res. 1996;722:177-180. https://doi.org/10.1016/0006-8993(96)00216-8
  60. Serra J, Sola R, Quiles C, Casanova-Molla J, Pascual V, Bostock H, Valls-Sole J. C-nociceptors sensitized to cold in a patient with smallfiber neuropathy and cold allodynia. Pain. 2009;147:46-53. https://doi.org/10.1016/j.pain.2009.07.028
  61. Matthews EA, Dickenson AH. A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology. 2002;96:633-640. https://doi.org/10.1097/00000542-200203000-00020
  62. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959-1964. https://doi.org/10.1016/S0140-6736(99)01307-0
  63. Song EB, Yang JH, Lee SH, Kang YK, Na HS, Kim SJ. Effects of clonidine and epinephrine on neuropathic pain in an experimental animal model for peripheral neuropathy. J Korean Acad Rehabil Med. 1999;23:101-108.
  64. Hayashida K, Obata H, Nakajima K, Eisenach JC. Gabapentin acts within the locus coeruleus to alleviate neuropathic pain. Anesthesiology. 2008;109:1077-1084. https://doi.org/10.1097/ALN.0b013e31818dac9c
  65. Han JS, Xie GX, Zhou ZF, Folkesson R, Terenius L. Acupuncture mechanisms in rabbits studied with microinjection of antibodies against beta-endorphin, enkephalin and substance P. Neuropharmacology. 1984;23:1-5. https://doi.org/10.1016/0028-3908(84)90208-9
  66. Kwon YB, Kang MS, Ahn CJ, Han HJ, Ahn BC, Lee JH. Effect of high or low frequency electroacupuncture on the cellular activity of catecholaminergic neurons in the brain stem. Acupunct Electrother Res. 2000;25:27-36. https://doi.org/10.3727/036012900816356235
  67. Bodnar R, Paul D, Pasternak GW. Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Brain Res. 1991;558:224-230. https://doi.org/10.1016/0006-8993(91)90772-N
  68. Leite-Panissi CR, Brentegani MR, Menescal-de-Oliveira L. Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig. Braz J Med Biol Res. 2004;37:1571-1579. https://doi.org/10.1590/S0100-879X2004001000018
  69. Shimoyama M, Shimoyama N, Inturrisi CE, Elliott KJ. Gabapentin enhances the antinociceptive effects of spinal morphine in the rat tail-flick test. Pain. 1997;72:375-382. https://doi.org/10.1016/S0304-3959(97)00065-1
  70. Hayashida K, Parker R, Eisenach JC. Oral gabapentin activates spinal cholinergic circuits to reduce hypersensitivity after peripheral nerve injury and interacts synergistically with oral donepezil. Anesthesiology. 2007;106:1213-1219. https://doi.org/10.1097/01.anes.0000267605.40258.98

피인용 문헌

  1. Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats vol.33, pp.1, 2017, https://doi.org/10.3344/kjp.2020.33.1.13
  2. Bee Venom Acupuncture Attenuates Oxaliplatin-Induced Neuropathic Pain by Modulating Action Potential Threshold in A-Fiber Dorsal Root Ganglia Neurons vol.12, pp.12, 2020, https://doi.org/10.3390/toxins12120737
  3. Aromatic and Aliphatic Apiuronides from the Bark of Cinnamomum cassia vol.84, pp.3, 2017, https://doi.org/10.1021/acs.jnatprod.0c01062
  4. Electroacupuncture prevents cocaine-induced conditioned place preference reinstatement and attenuates ΔFosB and GluR2 expression vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-93014-0
  5. Comparison between acupuncture therapy and gabapentin for chronic pain: a pilot study vol.39, pp.6, 2017, https://doi.org/10.1177/09645284211026683